Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/712

Role of lipoprotein lipase activity on lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy.


Vista previa

Ver/Abrir:
 Role_Herrera_et_al_Am_J_Obs&Gin_1988.pdf
489,33 kB
Adobe PDF
Título : Role of lipoprotein lipase activity on lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy.
Autor : Herrera Castillón, Emilio.
Lasunción, Miguel Ángel.
Gómez Coronado, Diego.
Aranda, P.
López Luna, Pilar.
Maier, Isabel.
Materias: Hypertriglyceridemia.Lipoprotein lipase.Lipoproteins.Pregnancy.
Resumen : The mechanism that induces maternal hypertriglyceridemia in late normal pregnancy, and its physiologic significance are reviewed as a model of the effects of sex steroids on lipoprotein metabolism. In the pregnant rat, maternal carcass fat content progressively increases up to day 19 of gestation, then declines at day 21. The decline may be explained by the augmented lipolytic activity in adipose tissue that is seen in late pregnancy in the rat. This change causes maternal circulating free fatty acids and glycerol levels to rise. Although the liver is the main receptor organ for these metabolites, liver triglyceride content is reduced. Circulating triglycerides and very-low-density lipoprotein (VLDL)-triglyceride levels are highly augmented in the pregnant rat, indicating that liver-synthesized triglycerides are rapidly released into the circulation. Similar increments in circulating VLDL-triglycerides are seen in pregnant women during the third trimester of gestation. This increase is coincident with a decrease in plasma postheparin lipoprotein lipase activity, indicating a reduced removal of circulating triglycerides by maternal tissues or a redistribution in their use among the different tissues. During late gestation in the rat, tissue lipoprotein lipase activity varies in different directions; it decreases in adipose tissue, the liver, and to a smaller extent the heart, but increases in placental and mammary gland tissue. These changes play an important role in the fate of circulating triglycerides, which are diverted from uptake by adipose tissue to uptake by the mammary gland for milk synthesis, and probably by the placenta for hydrolysis and transfer of released nonesterified fatty acids to the fetus. After 24 hours of starvation, lipoprotein lipase activity in the liver greatly increases in the rat in late pregnancy; this change is not seen in virgin animals. This alteration is similar to that seen in liver triglyceride content and plasma ketone body concentration in the fasted pregnant rat. In the fasting condition during late gestation, heightened lipoprotein lipase activity is the proposed mechanism through which the liver becomes an acceptor of circulating triglycerides, allowing their use as ketogenic substrates, so that both maternal and fetal tissues may indirectly benefit from maternal hypertriglyceridemia. Changes in the magnitude and direction of lipoprotein lipase activity in different tissues during gestation actively contribute both to the development of hypertriglyceridemia and to the metabolic fate of circulating triglycerides. Any deviation in these metabolic adaptations occurring in the human mother may have consequences that modify her lipoprotein profile, even postpartum. Hormone-induced changes in pregnancy mirror those seen with oral contraceptive steroids and provide a teleologic rationale for the lipoprotein changes induced by sex steroids.
Descripción : En: American journal of obstetrics and gynecology ISSN 0002-9378 1988. n. 158, pp 1575-1583
URI : http://hdl.handle.net/10637/712
Derechos: http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Fecha de publicación : 19-sep-1988
Centro : Universidad San Pablo-CEU
Aparece en las colecciones: Facultad de Farmacia





Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.