Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/13645

Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods


Thumbnail

See/Open:
 Assessment_Herring_COATINGS_2021.pdf
23,77 MB
Adobe PDF
Title: Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods
Authors : Herring, Robbie.
Doménech Ballester, Luis
Renau Martínez, Jordi
Sakalyté, Asta.
Ward, Carwyn
Dyer, Kirsten
Sánchez López, Fernando.
Keywords: Materiales - Fatiga.Erosión pluvial.Protective coatings.Rain erosion.Materiales de revestimiento.Coatings.Revestimientos protectores.Materials - Fatigue.
Publisher: MDPI
Citation: Herring, R., Domenech, L., Renau, J., Šakalytė, A., Ward, C., Dyer, K. & Sánchez, F. (2021). Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods. Coatings, vol. 11, i. 7 (25 jun.), art. 767. DOI: http://dx.doi.org/10.3390/coatings11070767
Abstract: Leading edge protection (LEP) coating systems are applied to protect turbine blade edges from rain erosion. The performance of a LEP system is assessed in an accelerated rain erosion test (RET) as a metric for industrial application, but these tests are expensive. Modelling methods are available to predict erosion, based on fundamental material properties, but there is a lack of validation. The Springer model (1976) is analysed in this work to assess it as a tool for using material fundamental properties to predict the time to failure in a rain erosion test. It has been applied, referenced and industry validated with important partial considerations. The method has been applied successfully for erosion damage by wear performance prediction when combined with prior material data from rain erosion test (RET), instead of obtaining it directly from fundamental properties measured separately as Springer proposed. The method also offers accurate predictions when coupled with modified numerical parameters obtained from experimental RET testing data. This research aims to understand the differences between the experimental data used by Springer and the current industry approach to rain erosion testing, and to determine how it may introduce inaccuracies into lifetime predictions of current LEP systems, since they are very different to those tested in the historic modelling validation. In this work, a review of the modelling is presented, allowing for the understanding of key issues of its computational implementation and the required experimental material characterisation. Modelling results are discussed for different original application issues and industry-related LEP configuration cases, offering the reader to interpret the limits of the performance prediction when considering the variation in material fundamental properties involved.
Description: Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2079-6412/11/7/767
Este artículo pertenece al número especial "Wind Turbine Blade Coatings: New Advances, Application and Challenges".
URI: http://hdl.handle.net/10637/13645
Rights : http://creativecommons.org/licenses/by/4.0/deed.es
ISSN: 2079-6412 (Electrónico)
Issue Date: 25-Jun-2021
Center : Universidad Cardenal Herrera-CEU
Appears in Collections:Dpto. Matemáticas, Física y Ciencias Tecnológicas





Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.