Geometric structures in tensor representations : final release
dc.centro | Universidad Cardenal Herrera-CEU | |
dc.contributor.author | Falcó Montesinos, Antonio | |
dc.contributor.author | Nouy, Anthony | es |
dc.contributor.author | Hackbusch, Wolfgang | es |
dc.contributor.other | UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas | |
dc.date | 2015 | es |
dc.date.accessioned | 2016-01-20T05:00:59Z | |
dc.date.available | 2016-01-20T05:00:59Z | |
dc.date.issued | 2015-06-22 | |
dc.description | Este documento de trabajo se encuentra disponible en http://arxiv.org/pdf/1505.03027v2.pdf | |
dc.description.abstract | The main goal of this paper is to study the geometric structures associated with the representation of tensors in subspace based formats. To do this we use a property of the so-called minimal subspaces which allows us to describe the tensor representation by means of a rooted tree. By using the tree structure and the dimensions of the associated minimal subspaces, we introduce, in the underlying algebraic tensor space, the set of tensors in a tree-based format with either bounded or fixed tree-based rank. This class contains the Tucker format and the Hierarchical Tucker format (including the Tensor Train format). In particular, we show that the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank of an algebraic tensor product of normed vector spaces is an analytic Banach manifold. Indeed, the manifold geometry for the set of tensors with fixed tree-based rank is induced by a fibre bundle structure and the manifold geometry for the set of tensors with bounded tree-based rank is given by a finite union of connected components where each of them is a manifold of tensors in the tree-based format with a fixed tree-based rank. The local chart representation of these manifolds is often crucial for an algorithmic treatment of high-dimensional PDEs and minimization problems. In order to describe the relationship between these manifolds and the natural ambient space, we introduce the definition of topological tensor spaces in the tree-based format. We prove under natural conditions that any tensor of the topological tensor space under consideration admits best approximations in the manifold of tensors in the tree-based format with bounded tree-based rank. In this framework, we also show that the tangent (Banach) space at a given tensor is a complemented subspace in the natural ambient tensor Banach space and hence the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank is an immersed submanifold. This fact allows us to extend the Dirac-Frenkel variational principle in the bodywork of topological tensor spaces. | |
dc.format | application/pdf | es |
dc.identifier.citation | Falcó, A., Hackbusch, W. & Nouy, A. (2015). Geometric structures in tensor representations : final release. | |
dc.identifier.uri | http://hdl.handle.net/10637/7892 | |
dc.language.iso | en | es |
dc.rights | open access | |
dc.rights.cc | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.rights.license | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | Análisis numérico - Documentos de trabajo. | es |
dc.subject | Cálculo tensorial - Documentos de trabajo. | es |
dc.subject | Análisis funcional - Documentos de trabajo. | es |
dc.subject | Álgebra de tensores - Documentos de trabajo. | es |
dc.subject | Tensor algebra - Working papers. | es |
dc.subject | Espacios generalizados - Documentos de trabajo. | es |
dc.subject | Functional analysis - Working papers. | es |
dc.subject | Function spaces - Working papers. | es |
dc.subject | Calculus of tensors - Working papers. | es |
dc.subject | Generalized spaces - Working papers. | es |
dc.subject | Espacios funcionales - Documentos de trabajo. | es |
dc.subject | Banach, Espacios de - Documentos de trabajo. | es |
dc.subject | Banach spaces - Working papers. | es |
dc.subject | Geometría diferencial - Documentos de trabajo. | es |
dc.subject | Geometry, Differential - Working papers. | es |
dc.subject | Numerical analysis - Working papers. | es |
dc.title | Geometric structures in tensor representations : final release | es |
dc.type | Documento de trabajo | es |
dspace.entity.type | Publication | es |
europeana.dataProvider | UNIVERSIDAD SAN PABLO CEU | |
europeana.isShownAt | http://hdl.handle.net/10637/7892 | |
europeana.object | http://repositorioinstitucional.ceu.es/visor/libros/630440/thumb_europeana/630440.jpg | |
europeana.provider | Hispana | |
europeana.rights | http://creativecommons.org/publicdomain/zero/1.0/ | |
europeana.type | TEXT | |
relation.isAuthorOfPublication | 9596df8c-5f91-4c71-9587-f431b684e53d | |
relation.isAuthorOfPublication.latestForDiscovery | 9596df8c-5f91-4c71-9587-f431b684e53d |
Files
Original bundle
1 - 1 of 1