Citation

Bibliographic manager

Abstract

The main goal of this paper is to study the geometric structures associated with the representation of tensors in subspace based formats. To do this we use a property of the so-called minimal subspaces which allows us to describe the tensor representation by means of a rooted tree. By using the tree structure and the dimensions of the associated minimal subspaces, we introduce, in the underlying algebraic tensor space, the set of tensors in a tree-based format with either bounded or fixed tree-based rank. This class contains the Tucker format and the Hierarchical Tucker format (including the Tensor Train format). In particular, we show that the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank of an algebraic tensor product of normed vector spaces is an analytic Banach manifold. Indeed, the manifold geometry for the set of tensors with fixed tree-based rank is induced by a fibre bundle structure and the manifold geometry for the set of tensors with bounded tree-based rank is given by a finite union of connected components where each of them is a manifold of tensors in the tree-based format with a fixed tree-based rank. The local chart representation of these manifolds is often crucial for an algorithmic treatment of high-dimensional PDEs and minimization problems. In order to describe the relationship between these manifolds and the natural ambient space, we introduce the definition of topological tensor spaces in the tree-based format. We prove under natural conditions that any tensor of the topological tensor space under consideration admits best approximations in the manifold of tensors in the tree-based format with bounded tree-based rank. In this framework, we also show that the tangent (Banach) space at a given tensor is a complemented subspace in the natural ambient tensor Banach space and hence the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank is an immersed submanifold. This fact allows us to extend the Dirac-Frenkel variational principle in the bodywork of topological tensor spaces.