Rubio Guerri, Consuelo
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- Monitoring platelet function in marine mammals: intracellular Ca2+ mobilization as a biomarker of platelet activation
2024-01 Platelet functionality plays a crucial role in marine mammals. Alterations in platelet function can result from stress, pathologies, or exposure to xenobiotics, among others. The early detection of platelet function abnormalities is essential in these species to prevent advanced pathology and mitigate potential risks. Our main objective was to establish a range of physiological values of platelet function in bottlenose dolphins (Tursiops truncatus), beluga whales (Delphinapterus leucas), sea lions (Otaria flavescens) and walruses (Odobenus rosmarus). Intraplatelet Ca2+ mobilization using adenosine diphosphate (ADP) as a platelet agonist was used as a platelet function biomarker, adapting the methodology previously described by us in dolphins (Felipo-Benavent et al., 2022) to the rest of the species. The assay was also adapted to a seal (Phoca vitulina). Numerical indicators of intraplatelet Ca2+ mobilization kinetics were established, and statistical analyses were performed to compare the effects of species, sex, age, aquarium and species. Significant differences were observed between species, being the platelets of the sea lions the more reactive to the agonist. This work demonstrates the usefulness of this assay in the diagnosis or monitoring of animals with hemostatic diseases, showing two clinical cases in which intraplatelet calcium mobilization values were altered in marine mammals suffering haemorrhages. This assay may also serve as a means to monitor environmental changes and their potential impact on the health of marine mammal populations.
- A SARS-CoV-2 full genome sequence of the B.1.1 lineage sheds light on viral evolution in Sicily in late 2020
2023-01-26 To investigate the influence of geographic constrains to mobility on SARS-CoV-2 circulation before the advent of vaccination, we recently characterized the occurrence in Sicily of viral lineages in the second pandemic wave (September to December 2020). Our data revealed wide prevalence of the then widespread through Europe B.1.177 variant, although some viral samples could not be classified with the limited Sanger sequencing tools used. A particularly interesting sample could not be fitted to a major variant then circulating in Europe and has been subjected here to full genome sequencing in an attempt to clarify its origin, lineage and relations with the seven full genome sequences deposited for that period in Sicily, hoping to provide clues on viral evolution. The obtained genome is unique (not present in databases). It hosts 20 single-base substitutions relative to the original Wuhan-Hu-1 sequence, 8 of them synonymous and the other 12 encoding 11 amino acid substitutions, all of them already reported one by one. They include four highly prevalent substitutions, NSP12:P323L, S:D614G, and N:R203K/G204R; the much less prevalent S:G181V, ORF3a:G49V and N:R209I changes; and the very rare mutations NSP3:L761I, NSP6:S106F, NSP8:S41F and NSP14:Y447H. GISAID labeled this genome as B.1.1 lineage, a lineage that appeared early on in the pandemic. Phylogenetic analysis also confirmed this lineage diagnosis. Comparison with the seven genome sequences deposited in late 2020 from Sicily revealed branching leading to B.1.177 in one branch and to Alpha in the other branch, and suggested a local origin for the S:G118V mutation.
- Molecular and serological studies on potential SARS-CoV-2 infection among 43 lemurs under human care-evidence for past infection in at least one individual
2023-12-31 In the setting of the recent COVID-19 pandemic, transmission of SARS-CoV-2 to animals has been reported in both domestic and wild animals and is a matter of concern. Given the genetic and functional similarities to humans, non-human primates merit particular attention. In the case of lemurs, generally considered endangered, they are believed to be susceptible to SARS-CoV-2 infection. We have conducted a study for evidence of SARS-CoV-2 infection among the 43 lemurs of Mundomar, a zoological park in Benidorm, Spain. They belong to two endangered lemur species, 23 black-and-white ruffed lemurs (Varecia variegata) and 20 ring-tailed lemurs (Lemur catta). Health assessments conducted in 2022 and 2023 included molecular analyses for SARS-CoV-2 RNA of oral and rectal swabs using two different RT-qPCR assays, always with negative results for SARS-CoV-2 in all animals. The assessment also included serological testing for antibodies against the receptor-binding domain (RBD) of the spike protein (S) of SARS-CoV-2, which again yielded negative results in all animals except one black-and-white ruffed lemur, supporting prior infection of that animal with SARS-CoV-2. Our data, while not indicating a high susceptibility of lemurs to SARS-CoV-2 infection, show that they can be infected, adding to the existing information body on potential ways for SARS-CoV-2 virus spreading in zoos, highlighting the need for animal surveillance for the virus.
- Pilot investigation of SARS-CoV-2 variants in the island of Sicily prior to and in the second wave of the COVID-19 pandemic
2022-04-26 After 2 years of the COVID-19 pandemic, we continue to face vital challenges stemming from SARS-CoV-2 variation, causing changes in disease transmission and severity, viral adaptation to animal hosts, and antibody/vaccine evasion. Since the monitoring, characterization, and cataloging of viral variants are important and the existing information on this was scant for Sicily, this pilot study explored viral variants circulation on this island before and in the growth phase of the second wave of COVID-19 (September and October 2020), and in the downslope of that wave (early December 2020) through sequence analysis of 54 SARS-CoV-2-positive samples. The samples were nasopharyngeal swabs collected from Sicilian residents by a state-run one-health surveillance laboratory in Palermo. Variant characterization was based on RT-PCR amplification and sequencing of four regions of the viral genome. The B.1.177 variant was the most prevalent one, strongly predominating before the second wave and also as the wave downsized, although its relative prevalence decreased as other viral variants, particularly B.1.160, contributed to virus circulation. The occurrence of the B.1.160 variant may have been driven by the spread of that variant in continental Europe and by the relaxation of travel restrictions in the summer of 2020. No novel variants were identified. As sequencing of the entire viral genome in Sicily for the period covered here was restricted to seven deposited viral genome sequences, our results shed some light on SARS-CoV-2 variant circulation during that wave in this insular region of Italy which combines its partial insular isolation with being a major entry point for the African immigration.
- First description of SARS-CoV-2 infection in two feral American Mink (Neovison vison) caught in the wild
2021-05-16 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, is considered a pathogen of animal origin that is mainly transmitted from human to human. Several animal species can be naturally or experimentally infected by SARS-CoV-2, with compelling evidence that mink is highly susceptible to SARS-CoV-2 infection. Human-to-mink infection cases have been reported and there are also suggestions that mink-to-human infection occurs. Mink infections have been reported to date only on fur farms, except for one infected freeranging wild mink near a Utah (USA) fur farm, which suggests a transmission pathway from farms to wild mink. We now report the detection of SARS-CoV-2 in 2 of 13 feral dark brown American mink (Neovison vison) trapped in the Valencian Community (Eastern Spain), during an invasive species trapping campaign. They were trapped in riverbeds in sparsely inhabited rural areas known to harbor self-sustained feral mink populations. The closest fur farm is about 20 km away. SARS-CoV-2 RNA was detected by two-step RT-PCR in these animalsā mesenteric lymph nodes and was confirmed by sequencing a 397-nucleotide amplified region of the S gene, yielding identical sequences in both animals. A molecular phylogenetic analysis was run on this sequence, which was found to correspond to the consensus SARS-CoV-2 sequence fromWuhan. Our findings appear to represent the first example of SARS-CoV-2 acquired in the wild by feral mink in self-sustained populations.
- Flow cytometric kinetic assay of calcium mobilization in whole blood platelets of bottlenose dolphins (Tursiops truncatus)
2023-04-13 Marine mammals may suffer alterations in platelet function and hemostasia due to multiple pathologies, environmental conditions (including stress) or exposure to different contaminants that induce platelet activation. Detecting early alterations in platelet function in these animals could be an especially relevant diagnostic tool in these species because they typically do not show signs of weakness or disease until the pathology is in advanced state, in order to avoid attracting predators in natural conditions. The study of early markers of platelet activation is relevant for the detection, monitoring and therapy of inflammation and hemostasis disorders. Flow cytometry provides a convenient method to evaluate platelet activation by following the kinetics of intracellular Ca2+, using sensitive fluorescent indicators that can be loaded into intact cells. In order to study intraplatelet Ca2+ mobilization in marine mammals, we have adapted a kinetic assay of human platelet activation to study platelet activation in whole-blood samples of bottlenose dolphins (Tursiops truncatus) using the Ca2+-sensitive dye Fluo-4AM and a clone of the platelet-specific antibody CD41-PE that recognizes dolphin platelets. This no-wash, no-lyse protocol provides a simple and sensitive tool to assess in vitro the time course and intensity of signaltransduction responses to platelet agonists under near-physiological conditions. The adaptation of this technique to marine mammals represents a methodological advance for basic and clinical veterinary applications but also for general environmental studies on these species.
- Bottlenose dolphins ("Tursiops truncatus") aggressive behavior towards other cetacean species in the Western Mediterranean
2021-11-03 Aggressive behavior of bottlenose dolphins (Tursiops truncatus) towards conspecifics is widely described, but they have also often been reported attacking and killing harbour porpoises (Phocoena phocoena) around the world. However, very few reports exist of aggressive interactions between bottlenose dolphins and other cetacean species. Here, we provide the first evidence that bottlenose dolphins in the western Mediterranean exhibit aggressive behavior towards both striped dolphins (Stenella coeruleoalba) and Rissoās dolphins (Grampus griseus). Necropsies and visual examination of stranded striped (14) and Rissoās (2) dolphins showed numerous lesions (external rake marks and different bone fractures or internal organ damage by blunt trauma). Indicatively, these lessons matched the inter-tooth distance and features of bottlenose dolphins. In all instances, these traumatic interactions were presumed to be the leading cause of the death. We discuss how habitat changes, dietary shifts, and/or human colonization of marine areas may be promoting these interactions.
- The finding of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in a wild Eurasian river otter (Lutra lutra) highlights the need for viral surveillance in wild mustelids
2022-03-31 Animals have been involved in the three known outbreaks of severe respiratory syndromes due to coronaviruses (years 2005, 2012, and 2019). The pandemic nature of the SARS-CoV-2 outbreak increases the likelihood of infection from humans of susceptible animal species that, thus, could become secondary viral hosts and even disease reservoirs. We present evidence of spillover infection of wild mustelids by reporting the presence of SARS-CoV-2 in a Eurasian river otter found near a water reservoir in the Valencian Community (Spain). We detected the virus using two different commercial RTqPCR assays on RNA extracted from the nasopharynx (swabbing) and from lung tissue and mediastinal lymph node homogenates. The corresponding samples from two additional otters from distant sites tested negative in identical assays. The diagnosis in the positive otter was confirmed by two-tube RT-PCR assay in which RNA was first retrotranscribed, and then specific regions of the spike (S), nucleocapsid (N), and ORF10 genes were separately amplified from the produced cDNA, followed by electrophoretic visualization and Sanger sequencing. The sequences of the amplified products revealed some non-synonymous changes in the N and ORF10 partial sequences, relative to the consensus sequence. These changes, identified already in human patient samples, point to human origin of the virus, although their specific combination was unique. These findings, together with our previous report of SARS-CoV-2 infection of feral American mink, highlight the need for SARS-CoV-2 surveillance of wild or feralmustelids to evaluate the risk that these animals could become SARS-CoV-2 reservoirs.
- Detection of SARS-CoV-2 in a dog with hemorrhagic diarrhea
2022-10-12 Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected several animal species, including dogs, presumably via human-to-animal transmission. Most infected dogs reported were asymptomatic, with low viral loads. However, in this case we detected SARS-CoV-2 in a dog from the North African coastal Spanish city of Ceuta presenting hemorrhagic diarrhea, a disease also reported earlier on in an infected dog from the USA. Case presentation: In early January 2021, a West Highland Terrier pet dog from Ceuta (Spain) presented hemorrhagic diarrhea with negative tests for candidate microbial pathogens. Since the animal was in a household whose members suffered SARS-CoV-2 in December 2020, dog feces were analyzed for SARS-CoV-2, proving positive in a twotube RT-PCR test, with confirmation by sequencing a 399-nucleotide region of the spike (S) gene. Furthermore, nextgeneration sequencing (NGS) covered > 90% SARS-CoV-2 genome sequence, allowing to classify it as variant B.1.177. Remarkably, the sequence revealed the Ile402Val substitution in the spike protein (S), of potential concern because it mapped in the receptor binding domain (RBD) that mediates virus interaction with the cell. NGS reads mapping to bacterial genomes showed that the dog fecal microbiome fitted best the characteristic microbiome of dogās acute hemorrhagic diarrhea. Conclusion: Our findings exemplify dog infection stemming from the human SARS-CoV-2 pandemic, providing nearly complete-genome sequencing of the virus, which is recognized as belonging to the B.1.177 variant, adding knowledge on variant circulation in a geographic region and period for which there was little viral variant characterization. A single amino acid substitution found in the S protein that could have been of concern is excluded to belong to this category given its rarity and intrinsic nature. The dogās pathology suggests that SARS-CoV-2 could affect the gastrointestinal tract of the dog.
- Systematic determination of herpesvirus in free-ranging cetaceans stranded in the Western Mediterranean : tissue tropism and associated lesions
2021-10-28 The monitoring of herpesvirus infection provides useful information when assessing marine mammalsā health. This paper shows the prevalence of herpesvirus infection (80.85%) in 47 cetaceans stranded on the coast of the Valencian Community, Spain. Of the 966 tissues evaluated, 121 tested positive when employing nested-PCR (12.53%). The largest proportion of herpesvirus-positive tissue samples was in the reproductive system, nervous system, and tegument. Herpesvirus was more prevalent in females, juveniles, and calves. More than half the DNA PCR positive tissues contained herpesvirus RNA, indicating the presence of actively replicating virus. This RNA was most frequently found in neonates. Fourteen unique sequences were identified. Most amplified sequences belonged to the Gammaherpesvirinae subfamily, but a greater variation was found in Alphaherpesvirinae sequences. This is the first report of systematic herpesvirus DNA and RNA determination in freeranging cetaceans. Nine (19.14%) were infected with cetacean morbillivirus and all of them (100%) were coinfected with herpesvirus. Lesions similar to those caused by herpesvirus in other species were observed, mainly in the skin, upper digestive tract, genitalia, and central nervous system. Other lesions were also attributable to concomitant etiologies or were nonspecific. It is necessary to investigate the possible role of herpesvirus infection in those cases.