Ballester Llobell, Beatriz
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- A SARS-CoV-2 full genome sequence of the B.1.1 lineage sheds light on viral evolution in Sicily in late 2020
2023-01-26 To investigate the influence of geographic constrains to mobility on SARS-CoV-2 circulation before the advent of vaccination, we recently characterized the occurrence in Sicily of viral lineages in the second pandemic wave (September to December 2020). Our data revealed wide prevalence of the then widespread through Europe B.1.177 variant, although some viral samples could not be classified with the limited Sanger sequencing tools used. A particularly interesting sample could not be fitted to a major variant then circulating in Europe and has been subjected here to full genome sequencing in an attempt to clarify its origin, lineage and relations with the seven full genome sequences deposited for that period in Sicily, hoping to provide clues on viral evolution. The obtained genome is unique (not present in databases). It hosts 20 single-base substitutions relative to the original Wuhan-Hu-1 sequence, 8 of them synonymous and the other 12 encoding 11 amino acid substitutions, all of them already reported one by one. They include four highly prevalent substitutions, NSP12:P323L, S:D614G, and N:R203K/G204R; the much less prevalent S:G181V, ORF3a:G49V and N:R209I changes; and the very rare mutations NSP3:L761I, NSP6:S106F, NSP8:S41F and NSP14:Y447H. GISAID labeled this genome as B.1.1 lineage, a lineage that appeared early on in the pandemic. Phylogenetic analysis also confirmed this lineage diagnosis. Comparison with the seven genome sequences deposited in late 2020 from Sicily revealed branching leading to B.1.177 in one branch and to Alpha in the other branch, and suggested a local origin for the S:G118V mutation.
- Molecular and serological studies on potential SARS-CoV-2 infection among 43 lemurs under human care-evidence for past infection in at least one individual
2023-12-31 In the setting of the recent COVID-19 pandemic, transmission of SARS-CoV-2 to animals has been reported in both domestic and wild animals and is a matter of concern. Given the genetic and functional similarities to humans, non-human primates merit particular attention. In the case of lemurs, generally considered endangered, they are believed to be susceptible to SARS-CoV-2 infection. We have conducted a study for evidence of SARS-CoV-2 infection among the 43 lemurs of Mundomar, a zoological park in Benidorm, Spain. They belong to two endangered lemur species, 23 black-and-white ruffed lemurs (Varecia variegata) and 20 ring-tailed lemurs (Lemur catta). Health assessments conducted in 2022 and 2023 included molecular analyses for SARS-CoV-2 RNA of oral and rectal swabs using two different RT-qPCR assays, always with negative results for SARS-CoV-2 in all animals. The assessment also included serological testing for antibodies against the receptor-binding domain (RBD) of the spike protein (S) of SARS-CoV-2, which again yielded negative results in all animals except one black-and-white ruffed lemur, supporting prior infection of that animal with SARS-CoV-2. Our data, while not indicating a high susceptibility of lemurs to SARS-CoV-2 infection, show that they can be infected, adding to the existing information body on potential ways for SARS-CoV-2 virus spreading in zoos, highlighting the need for animal surveillance for the virus.