Vicente Rodríguez, Marta
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- Pharmacological inhibition of Receptor Protein Tyrosine Phosphatase β/ζ (PTPRZ1) modulates behavioral responses to ethanol
2018-07-15 Pleiotrophin (PTN) and Midkine (MK) are neurotrophic factors that are upregulated in the prefrontal cortex after alcohol administration and have been shown to reduce ethanol drinking and reward. PTN and MK are the endogenous inhibitors of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ (a.k.a. PTPRZ1, RPTPβ, PTPζ), suggesting a potential role for this phosphatase in the regulation of alcohol effects. To determine if RPTPβ/ζ regulates ethanol consumption, we treated mice with recently developed small-molecule inhibitors of RPTPβ/ζ (MY10, MY33-3) before testing them for binge-like drinking using the drinking in the dark protocol. Mice treated with RPTPβ/ζ inhibitors, particularly with MY10, drank less ethanol than controls. MY10 treatment blocked ethanol conditioned place preference, showed limited effects on ethanol-induced ataxia, and potentiated the sedative effects of ethanol. We also tested whether RPTPβ/ζ is involved in ethanol signaling pathways. We found that ethanol treatment of neuroblastoma cells increased phosphorylation of anaplastic lymphoma kinase (ALK) and TrkA, known substrates of RPTPβ/ζ. Treatment of neuroblastoma cells with MY10 or MY33-3 also increased levels of phosphorylated ALK and TrkA. However, concomitant treatment of neuroblastoma cells with ethanol and MY10 or MY33-3 prevented the increase in pTrkA and pALK. These results demonstrate for the first time that ethanol engages TrkA signaling and that RPTPβ/ζ modulates signaling pathways activated by alcohol and behavioral responses to this drug. The data support the hypothesis that RPTPβ/ζ might be a novel target of pharmacotherapy for reducing excessive alcohol consumption.
- Receptor protein tyrosine phosphatase β/ζ regulates loss of neurogenesis in the mouse hippocampus following adolescent acute ethanol exposure
2023-01-26 Adolescence is a critical period for brain maturation in which this organ is more vulnerable to the damaging effects of ethanol. Administration of ethanol in mice induces a rapid cerebral upregulation of pleiotrophin (PTN), a cytokine that regulates the neuroinflammatory processes induced by different insults and the behavioral effects of ethanol. PTN binds Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ and inhibits its phosphatase activity, suggesting that RPTPβ/ζ may be involved in the regulation of ethanol effects. To test this hypothesis, we have treated adolescent mice with the RPTPβ/ζ inhibitor MY10 (60 mg/kg) before an acute ethanol (6 g/kg) administration. Treatment with MY10 completely prevented the ethanol-induced neurogenic loss in the hippocampus of both male and female mice. In flow cytometry studies, ethanol tended to increase the number of NeuN+/activated Caspase-3+ cells particularly in female mice, but no significant effects were found. Ethanol increased Iba1+ cell area and the total marked area in the hippocampus of female mice, suggesting sex differences in ethanol-induced microgliosis. In addition, ethanol reduced the circulating levels of IL-6 and IL-10 in both sexes, although this reduction was only found significant in males and not affected by MY10 treatment. Interestingly, MY10 alone increased the total marked area and the number of Iba1+ cells only in the female hippocampus, but tended to reduce the circulating levels of TNF-α only in male mice. In summary, the data identify a novel modulatory role of RPTPβ/ζ on ethanol-induced loss of hippocampal neurogenesis, which seems unrelated to glial and inflammatory responses. The data also suggest sex differences in RPTPβ/ζ function that may be relevant to immune responses and ethanol-induced microglial responses.