Gramage, Esther
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- Role of RPTPĪ²/Ī¶ in neuroinflammation and microgliaāneuron communication
2020-11-20 Pleiotrophin (PTN) is a cytokine that is upregulated in different neuroinflammatory disorders. Using mice with transgenic PTN overexpression in the brain (Ptn-Tg), we have found a positive correlation between iNos and TnfĪ± mRNA and Ptn mRNA levels in the prefrontal cortex (PFC) of LPS-treated mice. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) Ī²/Ī¶, which is mainly expressed in the central nervous system. We aimed to test if RPTPĪ²/Ī¶ is involved in the modulation of neuroinflammatory responses using specific inhibitors of RPTPĪ²/Ī¶ (MY10 and MY33-3). Treatment with MY10 potentiated LPS-induced microglial responses in the mouse PFC. Surprisingly, MY10 caused a decrease in LPS-induced NF-ĪŗB p65 expression, suggesting that RPTPĪ²/Ī¶ may be involved in a novel mechanism of potentiation of microglial activation independent of the NF-ĪŗB p65 pathway. MY33-3 and MY10 limited LPS-induced nitrites production and iNos increases in BV2 microglial cells. SH-SY5Y neuronal cells were treated with the conditioned media from MY10/LPS-treated BV2 cells. Conditioned media from non-stimulated and from LPS-stimulated BV2 cells increased the viability of SH-SY5Y cultures. RPTPĪ²/Ī¶ inhibition in microglial cells disrupted this neurotrophic effect of microglia, suggesting that RPTPĪ²/Ī¶ plays a role in the neurotrophic phenotype of microglia and in microglia-neuron communication.
- Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPb/z Axis: Relevance in Therapeutic Development
2019-04-12 Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) b/z, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.
- Metabolomics and biochemical alterations caused by pleiotrophin in the 6āhydroxydopamine mouse model of Parkinsonās disease
2022-03-04 Pleiotrophin (PTN) is a cytokine involved in nerve tissue repair processes, neuroinflammation and neuronal survival. PTN expression levels are upregulated in the nigrostriatal pathway of Parkinsonās Disease (PD) patients. We aimed to characterize the dopaminergic injury and glial responses in the nigrostriatal pathway of mice with transgenic Ptn overexpression in the brain (Ptn-Tg) after intrastriatal injection of the catecholaminergic toxic 6-hydroxydopamine (6-OHDA) at a low dose (5 Ī¼g). Ten days after surgery, the injection of 6-OHDA induced a significant decrease of the number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and of the striatal TH contents in Wild type (Wt) mice. In contrast, these effects of 6-OHDA were absent in Ptn-Tg mice. When the striatal Iba1 and GFAP immunoreactivity was studied, no statistical differences were found between vehicle-injected Wt and Ptn-Tg mice. Furthermore, 6-OHDA did not cause robust glial responses neither on Wt or Ptn-Tg mice 10 days after injections. In metabolomics studies, we detected interesting metabolites that significantly discriminate the more injured 6-OHDA-injected Wt striatum and the more protected 6-OHDA-injected Ptn-Tg striatum. Particularly, we detected groups of metabolites, mostly corresponding to phospholipids, whose trends were opposite in both groups. In summary, the data confirm lower 6-OHDA-induced decreases of TH contents in the nigrostriatal pathway of Ptn-Tg mice, suggesting a neuroprotective effect of brain PTN overexpression in this mouse model of PD. New lipid-related PD drug candidates emerge from this study and the data presented here support the increasingly recognized ālipid cascadeā in PD.
- Adolescent intermittent ethanol exposure decreases perineuronal nets in the hippocampus in a sex dependent manner: Modulation through pharmacological inhibition of RPTPĪ²/Ī¶
2024-01-29 Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) Ī²/Ī¶ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPĪ²/Ī¶, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPĪ²/Ī¶ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.
- Pharmacological inhibition of Receptor Protein Tyrosine Phosphatase Ī²/Ī¶ (PTPRZ1) modulates behavioral responses to ethanol
2018-07-15 Pleiotrophin (PTN) and Midkine (MK) are neurotrophic factors that are upregulated in the prefrontal cortex after alcohol administration and have been shown to reduce ethanol drinking and reward. PTN and MK are the endogenous inhibitors of Receptor Protein Tyrosine Phosphatase (RPTP) Ī²/Ī¶ (a.k.a. PTPRZ1, RPTPĪ², PTPĪ¶), suggesting a potential role for this phosphatase in the regulation of alcohol effects. To determine if RPTPĪ²/Ī¶ regulates ethanol consumption, we treated mice with recently developed small-molecule inhibitors of RPTPĪ²/Ī¶ (MY10, MY33-3) before testing them for binge-like drinking using the drinking in the dark protocol. Mice treated with RPTPĪ²/Ī¶ inhibitors, particularly with MY10, drank less ethanol than controls. MY10 treatment blocked ethanol conditioned place preference, showed limited effects on ethanol-induced ataxia, and potentiated the sedative effects of ethanol. We also tested whether RPTPĪ²/Ī¶ is involved in ethanol signaling pathways. We found that ethanol treatment of neuroblastoma cells increased phosphorylation of anaplastic lymphoma kinase (ALK) and TrkA, known substrates of RPTPĪ²/Ī¶. Treatment of neuroblastoma cells with MY10 or MY33-3 also increased levels of phosphorylated ALK and TrkA. However, concomitant treatment of neuroblastoma cells with ethanol and MY10 or MY33-3 prevented the increase in pTrkA and pALK. These results demonstrate for the first time that ethanol engages TrkA signaling and that RPTPĪ²/Ī¶ modulates signaling pathways activated by alcohol and behavioral responses to this drug. The data support the hypothesis that RPTPĪ²/Ī¶ might be a novel target of pharmacotherapy for reducing excessive alcohol consumption.
- Receptor protein tyrosine phosphatase Ī²/Ī¶ regulates loss of neurogenesis in the mouse hippocampus following adolescent acute ethanol exposure
2023-01-26 Adolescence is a critical period for brain maturation in which this organ is more vulnerable to the damaging effects of ethanol. Administration of ethanol in mice induces a rapid cerebral upregulation of pleiotrophin (PTN), a cytokine that regulates the neuroinflammatory processes induced by different insults and the behavioral effects of ethanol. PTN binds Receptor Protein Tyrosine Phosphatase (RPTP) Ī²/Ī¶ and inhibits its phosphatase activity, suggesting that RPTPĪ²/Ī¶ may be involved in the regulation of ethanol effects. To test this hypothesis, we have treated adolescent mice with the RPTPĪ²/Ī¶ inhibitor MY10 (60 mg/kg) before an acute ethanol (6 g/kg) administration. Treatment with MY10 completely prevented the ethanol-induced neurogenic loss in the hippocampus of both male and female mice. In flow cytometry studies, ethanol tended to increase the number of NeuN+/activated Caspase-3+ cells particularly in female mice, but no significant effects were found. Ethanol increased Iba1+ cell area and the total marked area in the hippocampus of female mice, suggesting sex differences in ethanol-induced microgliosis. In addition, ethanol reduced the circulating levels of IL-6 and IL-10 in both sexes, although this reduction was only found significant in males and not affected by MY10 treatment. Interestingly, MY10 alone increased the total marked area and the number of Iba1+ cells only in the female hippocampus, but tended to reduce the circulating levels of TNF-Ī± only in male mice. In summary, the data identify a novel modulatory role of RPTPĪ²/Ī¶ on ethanol-induced loss of hippocampal neurogenesis, which seems unrelated to glial and inflammatory responses. The data also suggest sex differences in RPTPĪ²/Ī¶ function that may be relevant to immune responses and ethanol-induced microglial responses.
- Inhibition of RPTPĪ²/Ī¶ reduces chronic ethanol intake in adolescent mice and modulates ethanol effects on hippocampal neurogenesis and glial responses in a sex-dependent manner.
2023-01-24 Pleiotrophin (PTN) is a cytokine that modulates ethanol drinking and reward and regulates glial responses in different contexts. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) Ī²/Ī¶. Inhibition of RPTPĪ²/Ī¶ reduces binge-like drinking in adult male mice. Whether inhibition of RPTPĪ²/Ī¶ is effective in reducing ethanol consumption during adolescence and in both sexes remained to be studied. In this work, male and female adolescent mice underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Treatment with MY10 (60 mg/kg, i.g.), a small-molecule RPTPĪ²/Ī¶ inhibitor, reduced chronic 3-week ethanol consumption only in male mice. We detected an ethanol-induced overall decrease in hippocampal GFAPir and Iba1ir, independently of the treatment received, suggesting that RPTPĪ²/Ī¶ is not key in the regulation of IAE-induced glial responses. However, we found a significant negative correlation between the size of microglial cells and the number of hippocampal neuronal progenitors only in male mice after IAE. This correlation was disrupted by treatment with MY10 before each drinking session, which may be related to the ability of MY10 to regulate the intensity of the perineuronal nets (PNNs) in the hippocampus in a sex-dependent manner. The data show for the first time that inhibition of RPTPĪ²/Ī¶ reduces chronic voluntary ethanol consumption in adolescent mice in a sexdependent manner. In addition, we show evidence for sex-specific differences in the effects of IAE on glial responses and hippocampal neurogenesis, which may be related to different actions of the RPTPĪ²/Ī¶ signalling pathway in the brains of male and female mice.