Loading...
Profile Picture

Galán Llario, Milagros María

Research Projects

Organizational Units

Job Title

Ayudante de Investigación

Faculty

University of origin

Email

Name

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    USP
    Role of RPTPβ/ζ in neuroinflammation and microglia‑neuron communication2020-11-20

    Pleiotrophin (PTN) is a cytokine that is upregulated in different neuroinflammatory disorders. Using mice with transgenic PTN overexpression in the brain (Ptn-Tg), we have found a positive correlation between iNos and Tnfα mRNA and Ptn mRNA levels in the prefrontal cortex (PFC) of LPS-treated mice. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, which is mainly expressed in the central nervous system. We aimed to test if RPTPβ/ζ is involved in the modulation of neuroinflammatory responses using specific inhibitors of RPTPβ/ζ (MY10 and MY33-3). Treatment with MY10 potentiated LPS-induced microglial responses in the mouse PFC. Surprisingly, MY10 caused a decrease in LPS-induced NF-κB p65 expression, suggesting that RPTPβ/ζ may be involved in a novel mechanism of potentiation of microglial activation independent of the NF-κB p65 pathway. MY33-3 and MY10 limited LPS-induced nitrites production and iNos increases in BV2 microglial cells. SH-SY5Y neuronal cells were treated with the conditioned media from MY10/LPS-treated BV2 cells. Conditioned media from non-stimulated and from LPS-stimulated BV2 cells increased the viability of SH-SY5Y cultures. RPTPβ/ζ inhibition in microglial cells disrupted this neurotrophic effect of microglia, suggesting that RPTPβ/ζ plays a role in the neurotrophic phenotype of microglia and in microglia-neuron communication.

  • Thumbnail Image
    Publication
    USP
    Adolescent intermittent ethanol exposure decreases perineuronal nets in the hippocampus in a sex dependent manner: Modulation through pharmacological inhibition of RPTPβ/ζ2024-01-29

    Adolescence is a critical period for brain maturation in which this organ undergoes critical plasticity mechanisms that increase its vulnerability to the effects of alcohol. Significantly, ethanol-induced disruption of hippocampal neurogenesis has been related to cognitive decline in adulthood. During adolescence, the maturation of perineuronal nets (PNNs), extracellular matrix structures highly affected by ethanol consumption, plays a fundamental role in neurogenesis and plasticity in the hippocampus. Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ is a critical anchor point for PNNs on the cell surface. Using the adolescent intermittent access to ethanol (IAE) model, we previously showed that MY10, a small-molecule inhibitor of RPTPβ/ζ, reduces chronic ethanol consumption in adolescent male mice but not in females and prevents IAE-induced neurogenic loss in the male hippocampus. We have now tested if these effects of MY10 are related to sex-dependent modulatory actions on ethanol-induced effects in PNNs. Our findings suggest a complex interplay between alcohol exposure, neural structures, and sex-related differences in the modulation of PNNs and parvalbumin (PV)-positive cells in the hippocampus. In general, IAE increased the number of PV + cells in the female hippocampus and reduced PNNs intensity in different hippocampal regions, particularly in male mice. Notably, we found that pharmacological inhibition of RPTPβ/ζ with MY10 regulates ethanol-induced alterations of PNNs intensity, which correlates with the protection of hippocampal neurogenesis from ethanol neurotoxic effects and may be related to the capacity of MY10 to increase the gene expression of key components of PNNs.

  • Thumbnail Image
    Publication
    USP
    Receptor protein tyrosine phosphatase β/ζ regulates loss of neurogenesis in the mouse hippocampus following adolescent acute ethanol exposure2023-01-26

    Adolescence is a critical period for brain maturation in which this organ is more vulnerable to the damaging effects of ethanol. Administration of ethanol in mice induces a rapid cerebral upregulation of pleiotrophin (PTN), a cytokine that regulates the neuroinflammatory processes induced by different insults and the behavioral effects of ethanol. PTN binds Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ and inhibits its phosphatase activity, suggesting that RPTPβ/ζ may be involved in the regulation of ethanol effects. To test this hypothesis, we have treated adolescent mice with the RPTPβ/ζ inhibitor MY10 (60 mg/kg) before an acute ethanol (6 g/kg) administration. Treatment with MY10 completely prevented the ethanol-induced neurogenic loss in the hippocampus of both male and female mice. In flow cytometry studies, ethanol tended to increase the number of NeuN+/activated Caspase-3+ cells particularly in female mice, but no significant effects were found. Ethanol increased Iba1+ cell area and the total marked area in the hippocampus of female mice, suggesting sex differences in ethanol-induced microgliosis. In addition, ethanol reduced the circulating levels of IL-6 and IL-10 in both sexes, although this reduction was only found significant in males and not affected by MY10 treatment. Interestingly, MY10 alone increased the total marked area and the number of Iba1+ cells only in the female hippocampus, but tended to reduce the circulating levels of TNF-α only in male mice. In summary, the data identify a novel modulatory role of RPTPβ/ζ on ethanol-induced loss of hippocampal neurogenesis, which seems unrelated to glial and inflammatory responses. The data also suggest sex differences in RPTPβ/ζ function that may be relevant to immune responses and ethanol-induced microglial responses.

  • Thumbnail Image
    Publication
    USP
    Inhibition of RPTPβ/ζ reduces chronic ethanol intake in adolescent mice and modulates ethanol effects on hippocampal neurogenesis and glial responses in a sex-dependent manner.2023-01-24

    Pleiotrophin (PTN) is a cytokine that modulates ethanol drinking and reward and regulates glial responses in different contexts. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. Inhibition of RPTPβ/ζ reduces binge-like drinking in adult male mice. Whether inhibition of RPTPβ/ζ is effective in reducing ethanol consumption during adolescence and in both sexes remained to be studied. In this work, male and female adolescent mice underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Treatment with MY10 (60 mg/kg, i.g.), a small-molecule RPTPβ/ζ inhibitor, reduced chronic 3-week ethanol consumption only in male mice. We detected an ethanol-induced overall decrease in hippocampal GFAPir and Iba1ir, independently of the treatment received, suggesting that RPTPβ/ζ is not key in the regulation of IAE-induced glial responses. However, we found a significant negative correlation between the size of microglial cells and the number of hippocampal neuronal progenitors only in male mice after IAE. This correlation was disrupted by treatment with MY10 before each drinking session, which may be related to the ability of MY10 to regulate the intensity of the perineuronal nets (PNNs) in the hippocampus in a sex-dependent manner. The data show for the first time that inhibition of RPTPβ/ζ reduces chronic voluntary ethanol consumption in adolescent mice in a sexdependent manner. In addition, we show evidence for sex-specific differences in the effects of IAE on glial responses and hippocampal neurogenesis, which may be related to different actions of the RPTPβ/ζ signalling pathway in the brains of male and female mice.