Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/14842

Design, development, integration and evaluation of hybrid fuel cell power systems for an unmanned water surface vehicle


Vista previa

Ver/Abrir:
 Design_Renau_IJOHE_2024.pdf
5,16 MB
Adobe PDF
Título : Design, development, integration and evaluation of hybrid fuel cell power systems for an unmanned water surface vehicle
Autor : Renau Martínez, Jordi
Tejada, Diego
García Peñas, Víctor
López, Eduardo
Doménech Ballester, Luis
Lozano, Antonio
Barreras Toledo, Félix Manuel
Materias: HidrógenoHydrogenEnergy resourcesRecursos energéticosFuente de energía renovableRenewable energy sources
Editorial : Elsevier
Citación : Renau, J., Tejada, D., García, V., López, E., Domenech, L., Lozano, A. & Barreras, F. (2024). Design, development, integration and evaluation of hybrid fuel cell power systems for an unmanned water surface vehicle. International Journal of Hydrogen Energy, vol. 54 (feb.), pp. 1273-1285. DOI: https://doi.org/10.1016/j.ijhydene.2023.12.043
Resumen : When fuel cells are used to power mobile applications, such a vehicles, hybridization with batteries is normally required. Depending on the electronic coupling between the energy sources the power plants can have passive or active configurations. Hybrid fuel cell-battery power plants with active power control flow have some advantages. For example, they can decrease the total energy losses, while improving the fuel cell performance, extending its lifetime. Power plants with DC/DC converters show low specific energy ratios, but with a superior energy management. In the present research, the hybrid power plant for an unmanned aquatic surface vehicle (USV) based on a PEM fuel cell and a Li-ion battery is developed. Active (with DC–DC converters) or passive architectures are analyzed by numerical simulations and experimental tests. Good results are obtained for the active power plant, where the peak power demands are managed by the battery pack while the fuel cell power remains constant thanks to the DC-converter control. The study shows that a simple control algorithm (no optimal) can help to extend the USV autonomy above 12 h in calm waters with a specific energy of 85.6 W h kg-1.
URI : http://hdl.handle.net/10637/14842
Derechos: Open Access
http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
ISSN : 0360-3199
Cubierto por: Acuerdo Transformativo – 2023
Fecha de publicación : 7-feb-2024
Centro : Universidad Cardenal Herrera-CEU
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas





Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.