Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/13566

Empowering advanced parametric modes clustering from topological data analysis


Vista previa

Ver/Abrir:
 Empowering_Frahi_AS_2021.pdf
1,71 MB
Adobe PDF
Título : Empowering advanced parametric modes clustering from topological data analysis
Autor : Frahi, Tarek
Mau, Baptiste Vinh
Duval, Jean Louis
Chinesta, Francisco
Falcó Montesinos, Antonio
Materias: Surfaces.Superficies (Matemáticas)Análisis de datos.Topology.Deformations (Mechanics)Deformaciones (Mecánica)Topología.Data analysis.
Editorial : MDPI
Citación : Frahi, T., Falco, A., Mau, B.V., Duval, J.L. & Chinesta, F. (2021). Empowering advanced parametric modes clustering from topological data analysis. Applied Sciences, vol. 11, i. 14 (16 jul.), art. 6554. DOI: https://doi.org/10.3390/app11146554
Resumen : Modal analysis is widely used for addressing NVH—Noise, Vibration, and Hardness—in automotive engineering. The so-called principal modes constitute an orthogonal basis, obtained from the eigenvectors related to the dynamical problem. When this basis is used for expressing the displacement field of a dynamical problem, the model equations become uncoupled. Moreover, a reduced basis can be defined according to the eigenvalues magnitude, leading to an uncoupled reduced model, especially appealing when solving large dynamical systems. However, engineering looks for optimal designs and therefore it focuses on parametric designs needing the efficient solution of parametric dynamical models. Solving parametrized eigenproblems remains a tricky issue, and, therefore, nonintrusive approaches are privileged. In that framework, a reduced basis consisting of the most significant eigenmodes is retained for each choice of the model parameters under consideration. Then, one is tempted to create a parametric reduced basis, by simply expressing the reduced basis parametrically by using an appropriate regression technique. However, an issue remains that limits the direct application of the just referred approach, the one related to the basis ordering. In order to order the modes before interpolating them, different techniques were proposed in the past, being the Modal Assurance Criterion—MAC—one of the most widely used. In the present paper, we proposed an alternative technique that, instead of operating at the eigenmodes level, classify the modes with respect to the deformed structure shapes that the eigenmodes induce, by invoking the so-called Topological Data Analysis—TDA—that ensures the invariance properties that topology ensure.
Descripción : Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2076-3417/11/14/6554
URI : http://hdl.handle.net/10637/13566
Derechos: http://creativecommons.org/licenses/by/4.0/deed.es
ISSN : 2076-3417 (Electrónico)
Fecha de publicación : 16-jul-2021
Centro : Universidad Cardenal Herrera-CEU
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas





Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.