Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/12887

Empowering advanced driver-assistance systems from topological data analysis


Thumbnail

See/Open:
 Empowering_Frahi_MATHEMATICS_2021.pdf
2,95 MB
Adobe PDF
Title: Empowering advanced driver-assistance systems from topological data analysis
Authors : Frahi, Tarek
Chinesta, Francisco
Falcó Montesinos, Antonio
Badías Herbera, Alberto
Cueto Prendes, Elías
Choi, Hyung Yun
Keywords: Morse, Teoría de.Morse theory.Topology.Cálculo de variaciones.Topología.Time.Machine learning.Aprendizaje automático (Inteligencia artificial)Análisis de datos.Data analysis.Tiempo.Calculus of variations.
Publisher: MDPI
Citation: Frahi, T., Chinesta, F., Falcó, A., Badias, A., Cueto, E., Choi, H.Y. et al. (2021). Empowering advanced driver-assistance systems from topological data analysis. Mathematics, vol. 9, i. 6 (16 mar.), art. 634. DOI: https://doi.org/10.3390/math9060634
Abstract: We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive model that can estimate the state of drivers given the data collected from motion sensors. For that purpose, we leverage recent developments in topological data analysis (TDA) to analyze and transform the data coming from sensor time series and build a machine learning model based on the topological features extracted with the TDA. We provide some experiments showing that our model proves to be accurate in the identification of the state of the user, predicting whether they are relaxed or tense.
Description: Este artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/9/6/634
En este artículo de investigación también participan: Manyong Han y Jean-Louis Duval.
Este artículo pertenece al número especial " Numerical simulation in biomechanics and biomedical engineering".
URI: http://hdl.handle.net/10637/12887
Rights : http://creativecommons.org/licenses/by/4.0/deed.es
ISSN: 2227-7390 (Electrónico).
Issue Date: 16-Mar-2021
Center : Universidad Cardenal Herrera-CEU
Appears in Collections:Dpto. Matemáticas, Física y Ciencias Tecnológicas





Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.