Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/11329

On a Theorem of Ore


Thumbnail

See/Open:
 Theorem_Montes_1992.pdf
795,59 kB
Adobe PDF
Title: On a Theorem of Ore
metadata.dc.creator: Montes, Jesús.
Nart, Enric.
Abstract: 0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the absolute discriminant and the prime-ideal decomposition of the rational primes in a number field K. The method, based on Newton’s polygon techniques, worked only when certain polynomials /i(Y), attached to any side S of the polygon, had no multiple factors. These results are generalized in this paper finding a much weaker condition, effectively computable, under which it is still possible to give a complete answer to the above questions. The multiplicities of the irreducible factors of the polynomials /;( Y) play thtn an essential role.
URI: http://hdl.handle.net/10637/11329
Rights : L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/
Issue Date: 1992
Center : Universitat Abat Oliba CEU
Appears in Collections:Documents de recerca





This item is licensed under a Creative Commons License Creative Commons