Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/11329
Full metadata record
DC FieldValueLanguage
dc.creatorMontes, Jesús-
dc.creatorNart, Enric-
dc.date.accessioned2018-07-18T12:47:04Z-
dc.date.accessioned2020-07-09T10:52:39Z-
dc.date.available2018-07-18T12:47:04Z-
dc.date.available2020-07-09T10:52:39Z-
dc.date.issued1992-
dc.identifier.urihttp://hdl.handle.net/10637/11329-
dc.description.abstract0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the absolute discriminant and the prime-ideal decomposition of the rational primes in a number field K. The method, based on Newton’s polygon techniques, worked only when certain polynomials /i(Y), attached to any side S of the polygon, had no multiple factors. These results are generalized in this paper finding a much weaker condition, effectively computable, under which it is still possible to give a complete answer to the above questions. The multiplicities of the irreducible factors of the polynomials /;( Y) play thtn an essential role.eng
dc.format.extent17 p.cat
dc.language.isoengcat
dc.rightsL'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceRECERCAT (Dipòsit de la Recerca de Catalunya)-
dc.subject.otherMatemàtiquescat
dc.subject.otherPolinomiscat
dc.subject.otherNombres primerscat
dc.subject.otherMatemáticas-
dc.subject.otherPolinomios-
dc.subject.otherNúmeros primos-
dc.titleOn a Theorem of Orecat
dc.typeArtículocat
dc.subject.udc511 - Teoria dels nombrescat
dc.embargo.termscapcat
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess-
dc.centroUniversitat Abat Oliba CEU-
Appears in Collections:Documents de recerca




This item is licensed under a Creative Commons License Creative Commons