Please use this identifier to cite or link to this item:
http://hdl.handle.net/10637/11329
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.creator | Montes, Jesús | - |
dc.creator | Nart, Enric | - |
dc.date.accessioned | 2018-07-18T12:47:04Z | - |
dc.date.accessioned | 2020-07-09T10:52:39Z | - |
dc.date.available | 2018-07-18T12:47:04Z | - |
dc.date.available | 2020-07-09T10:52:39Z | - |
dc.date.issued | 1992 | - |
dc.identifier.uri | http://hdl.handle.net/10637/11329 | - |
dc.description.abstract | 0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the absolute discriminant and the prime-ideal decomposition of the rational primes in a number field K. The method, based on Newton’s polygon techniques, worked only when certain polynomials /i(Y), attached to any side S of the polygon, had no multiple factors. These results are generalized in this paper finding a much weaker condition, effectively computable, under which it is still possible to give a complete answer to the above questions. The multiplicities of the irreducible factors of the polynomials /;( Y) play thtn an essential role. | eng |
dc.format.extent | 17 p. | cat |
dc.language.iso | eng | cat |
dc.rights | L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.source | RECERCAT (Dipòsit de la Recerca de Catalunya) | - |
dc.subject.other | Matemàtiques | cat |
dc.subject.other | Polinomis | cat |
dc.subject.other | Nombres primers | cat |
dc.subject.other | Matemáticas | - |
dc.subject.other | Polinomios | - |
dc.subject.other | Números primos | - |
dc.title | On a Theorem of Ore | cat |
dc.type | Artículo | cat |
dc.subject.udc | 511 - Teoria dels nombres | cat |
dc.embargo.terms | cap | cat |
dc.rights.accessLevel | info:eu-repo/semantics/openAccess | - |
dc.centro | Universitat Abat Oliba CEU | - |
Appears in Collections: | Documents de recerca |
This item is licensed under a Creative Commons License