Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorHerring, Robbie
dc.contributor.authorSánchez López, Fernando
dc.contributor.authorDoménech Ballester, Luis
dc.contributor.authorRenau Martínez, Jordi
dc.contributor.authorSakalyté, Asta
dc.contributor.authorWard, Carwyn
dc.contributor.authorDyer, Kirsten
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.contributor.otherProducción Científica UCH 2021
dc.date2021
dc.date.accessioned2022-04-09T04:00:50Z
dc.date.available2022-04-09T04:00:50Z
dc.date.issued2021-06-25
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2079-6412/11/7/767
dc.descriptionEste artículo pertenece al número especial "Wind Turbine Blade Coatings: New Advances, Application and Challenges".
dc.description.abstractLeading edge protection (LEP) coating systems are applied to protect turbine blade edges from rain erosion. The performance of a LEP system is assessed in an accelerated rain erosion test (RET) as a metric for industrial application, but these tests are expensive. Modelling methods are available to predict erosion, based on fundamental material properties, but there is a lack of validation. The Springer model (1976) is analysed in this work to assess it as a tool for using material fundamental properties to predict the time to failure in a rain erosion test. It has been applied, referenced and industry validated with important partial considerations. The method has been applied successfully for erosion damage by wear performance prediction when combined with prior material data from rain erosion test (RET), instead of obtaining it directly from fundamental properties measured separately as Springer proposed. The method also offers accurate predictions when coupled with modified numerical parameters obtained from experimental RET testing data. This research aims to understand the differences between the experimental data used by Springer and the current industry approach to rain erosion testing, and to determine how it may introduce inaccuracies into lifetime predictions of current LEP systems, since they are very different to those tested in the historic modelling validation. In this work, a review of the modelling is presented, allowing for the understanding of key issues of its computational implementation and the required experimental material characterisation. Modelling results are discussed for different original application issues and industry-related LEP configuration cases, offering the reader to interpret the limits of the performance prediction when considering the variation in material fundamental properties involved.
dc.formatapplication/pdf
dc.identifier.citationHerring, R., Domenech, L., Renau, J., Šakalytė, A., Ward, C., Dyer, K. & Sánchez, F. (2021). Assessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods. Coatings, vol. 11, i. 7 (25 jun.), art. 767. DOI: http://dx.doi.org/10.3390/coatings11070767
dc.identifier.doihttps://doi.org/10.3390/coatings11070767
dc.identifier.issn2079-6412 (Electrónico)
dc.identifier.urihttp://hdl.handle.net/10637/13645
dc.language.isoen
dc.language.isoes
dc.publisherMDPI
dc.relationEste artículo de investigación ha sido financiado parcialmente por el DEMOWIND-2 Project Offshore Demonstration Blade (ODB) financiado por el MINECO con referencia PCIN-069-2017, por el ESI-Group Chair de la Universidad CEU Cardenal Herrera y por el European Union's Horizon 2020 research and innovation program bajo la ayuda No 811473 del Project “LEP4BLADES”. Este trabajo también fue apoyado por el Engineering and Physical Sciences Research Council through the EPSRC Centre for Doctoral Training in Composites Manufacture (Grant No.: EP/K50323X/1), project partner the Offshore Renewable Energy Catapult y por el EPSRC Future Composites Manufacturing Hub (Grant No.: EP/P006701/1).
dc.relationUCH. Financiación Nacional
dc.relationUCH. Financiación Universidad
dc.relationUCH. Financiación Europea
dc.relation.ispartofCoatings, vol. 11, n. 7 (25 jun. 2021)
dc.relation.projectIDPCIN-069-2017
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectMateriales - Fatiga.
dc.subjectErosión pluvial.
dc.subjectProtective coatings.
dc.subjectRain erosion.
dc.subjectMateriales de revestimiento.
dc.subjectCoatings.
dc.subjectRevestimientos protectores.
dc.subjectMaterials - Fatigue.
dc.titleAssessment of a wind turbine blade erosion lifetime prediction model with industrial protection materials and testing methods
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublicationf3de4cf5-8af3-4861-a8fa-bbab0299369d
relation.isAuthorOfPublication49515b7a-0dea-486f-8710-bf220e53ca54
relation.isAuthorOfPublication.latestForDiscoveryf3de4cf5-8af3-4861-a8fa-bbab0299369d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Assessment_Herring_COATINGS_2021.pdf
Size:
23.21 MB
Format:
Adobe Portable Document Format