A path planning algorithm for a dynamic environment based on proper generalized decomposition

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorMora Aguilar, Marta Covadonga
dc.contributor.authorNadal Soriano, Enrique
dc.contributor.authorHilario Pérez, Lucía
dc.contributor.authorMontés Sánchez, Nicolás
dc.contributor.otherProducción Científica UCH 2020
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.date2020
dc.date.accessioned2021-06-03T04:00:25Z
dc.date.available2021-06-03T04:00:25Z
dc.date.issued2020-12-19
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/8/12/2245
dc.descriptionEste artículo pertenece al número especial "Computer aided geometric design".
dc.description.abstractA necessity in the design of a path planning algorithm is to account for the environment. If the movement of the mobile robot is through a dynamic environment, the algorithm needs to include the main constraint: real-time collision avoidance. This kind of problem has been studied by different researchers suggesting different techniques to solve the problem of how to design a trajectory of a mobile robot avoiding collisions with dynamic obstacles. One of these algorithms is the artificial potential field (APF), proposed by O. Khatib in 1986, where a set of an artificial potential field is generated to attract the mobile robot to the goal and to repel the obstacles. This is one of the best options to obtain the trajectory of a mobile robot in real-time (RT). However, the main disadvantage is the presence of deadlocks. The mobile robot can be trapped in one of the local minima. In 1988, J.F. Canny suggested an alternative solution using harmonic functions satisfying the Laplace partial differential equation. When this article appeared, it was nearly impossible to apply this algorithm to RT applications. Years later a novel technique called proper generalized decomposition (PGD) appeared to solve partial differential equations, including parameters, the main appeal being that the solution is obtained once in life, including all the possible parameters. Our previous work, published in 2018, was the first approach to study the possibility of applying the PGD to designing a path planning alternative to the algorithms that nowadays exist. The target of this work is to improve our first approach while including dynamic obstacles as extra parameters.
dc.formatapplication/pdf
dc.identifier.citationFalcó, A., Hilario, L., Montés, N., Mora, M.C. & Nadal, E. (2020). A path planning algorithm for a dynamic environment based on proper generalized decomposition. Mathematics, vol. 8, i. 12 (19 dec.), art. 2245. DOI: https://doi.org/10.3390/math8122245
dc.identifier.doihttps://doi.org/10.3390/math8122245
dc.identifier.issn2227-7390 (Electrónico).
dc.identifier.urihttp://hdl.handle.net/10637/12722
dc.language.isoen
dc.language.isoes
dc.publisherMDPI.
dc.relationEste artículo de investigación ha sido financiado por la Generalitat Valenciana a través de la beca GVA/2019/124 y por el Ministerio de Ciencia, Innovación y Universidades del Gobierno de España a través de la beca RTI2018-093521-B-C32.
dc.relationUCH. Financiación Nacional
dc.relationUCH. Financiación Autonómica
dc.relation.ispartofMathematics, vol. 8, n. 12.
dc.relation.projectIDGVA/2019/124
dc.relation.projectIDRTI2018-093521-B-C32.
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectAutómatas matemáticos, Teoria de.
dc.subjectMachine theory.
dc.subjectRobotics.
dc.subjectRobótica.
dc.subjectDifferential equations, Partial.
dc.subjectDescomposición (Matemáticas)
dc.subjectDecomposition (Mathematics)
dc.subjectFunciones armónicas.
dc.subjectHarmonic functions.
dc.subjectEcuaciones en derivadas parciales.
dc.titleA path planning algorithm for a dynamic environment based on proper generalized decomposition
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublicationf1ace399-acc8-40f9-ad4f-3106b502ca0c
relation.isAuthorOfPublication09097a7b-4862-4eee-b30e-01a627e28ff9
relation.isAuthorOfPublication.latestForDiscovery9596df8c-5f91-4c71-9587-f431b684e53d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Path_Falco_MATHEMATICS_2020.pdf
Size:
953.69 KB
Format:
Adobe Portable Document Format