Empowering advanced driver-assistance systems from topological data analysis

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorFrahi, Tarek
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorChinesta, Francisco
dc.contributor.authorBadías Herbera, Alberto
dc.contributor.authorCueto Prendes, Elías
dc.contributor.authorChoi, Hyung Yun
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.contributor.otherProducción Científica UCH 2021
dc.date2021
dc.date.accessioned2021-07-20T04:00:32Z
dc.date.available2021-07-20T04:00:32Z
dc.date.issued2021-03-16
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/9/6/634
dc.descriptionEn este artículo de investigación también participan: Manyong Han y Jean-Louis Duval.
dc.descriptionEste artículo pertenece al número especial " Numerical simulation in biomechanics and biomedical engineering".
dc.description.abstractWe are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive model that can estimate the state of drivers given the data collected from motion sensors. For that purpose, we leverage recent developments in topological data analysis (TDA) to analyze and transform the data coming from sensor time series and build a machine learning model based on the topological features extracted with the TDA. We provide some experiments showing that our model proves to be accurate in the identification of the state of the user, predicting whether they are relaxed or tense.
dc.formatapplication/pdf
dc.identifier.citationFrahi, T., Chinesta, F., Falcó, A., Badias, A., Cueto, E., Choi, H.Y. et al. (2021). Empowering advanced driver-assistance systems from topological data analysis. Mathematics, vol. 9, i. 6 (16 mar.), art. 634. DOI: https://doi.org/10.3390/math9060634
dc.identifier.doihttps://doi.org/10.3390/math9060634
dc.identifier.issn2227-7390 (Electrónico).
dc.identifier.urihttp://hdl.handle.net/10637/12887
dc.language.isoen
dc.language.isoes
dc.publisherMDPI
dc.relationEste artículo de investigación ha sido financiado por el ESI Group, con el contrato 2019-0060 de la Universidad de Zaragoza.
dc.relation.ispartofMathematics, vol. 9, n. 6.
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectMorse, Teoría de.
dc.subjectMorse theory.
dc.subjectTopology.
dc.subjectCálculo de variaciones.
dc.subjectTopología.
dc.subjectTime.
dc.subjectMachine learning.
dc.subjectAprendizaje automático (Inteligencia artificial)
dc.subjectAnálisis de datos.
dc.subjectData analysis.
dc.subjectTiempo.
dc.subjectCalculus of variations.
dc.titleEmpowering advanced driver-assistance systems from topological data analysis
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublication.latestForDiscovery9596df8c-5f91-4c71-9587-f431b684e53d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Empowering_Frahi_MATHEMATICS_2021.pdf
Size:
2.88 MB
Format:
Adobe Portable Document Format