Towards a vector field based approach to the Proper Generalized Decomposition (PGD)

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorMora Aguilar, Marta Covadonga
dc.contributor.authorNadal Soriano, Enrique
dc.contributor.authorHilario Pérez, Lucía
dc.contributor.authorMontés Sánchez, Nicolás
dc.contributor.otherProducción Científica UCH 2021
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.date2021
dc.date.accessioned2021-07-17T04:00:28Z
dc.date.available2021-07-17T04:00:28Z
dc.date.issued2021-01-01
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/9/1/34
dc.descriptionEste artículo pertenece al número especial "Applications of partial differential equations in Engineering".
dc.description.abstractA novel algorithm called the Proper Generalized Decomposition (PGD) is widely used by the engineering community to compute the solution of high dimensional problems. However, it is well-known that the bottleneck of its practical implementation focuses on the computation of the so-called best rank-one approximation. Motivated by this fact, we are going to discuss some of the geometrical aspects of the best rank-one approximation procedure. More precisely, our main result is to construct explicitly a vector field over a low-dimensional vector space and to prove that we can identify its stationary points with the critical points of the best rank-one optimization problem. To obtain this result, we endow the set of tensors with fixed rank-one with an explicit geometric structure.
dc.formatapplication/pdf
dc.identifier.citationFalcó, A., Hilario, L., Montés, N., Mora, M.C. & Nadal, E. (2021). Towards a vector field based approach to the Proper Generalized Decomposition (PGD). Mathematics, vol. 9, i. 1 (25 dec.), art. 34. DOI: https://doi.org/10.3390/math9010034
dc.identifier.doihttps://doi.org/10.3390/math9010034
dc.identifier.issn2227-7390 (Electrónico).
dc.identifier.urihttp://hdl.handle.net/10637/12883
dc.language.isoes
dc.language.isoen
dc.publisherMDPI.
dc.relationEste artículo de investigación ha sido financiado por la Generalitat Valenciana (GVA/2019/124) y por el Ministerio de Ciencia, Innovación y Universidades del Gobierno de España (RTI2018-093521-B-C32).
dc.relationUCH. Financiación Nacional
dc.relationUCH. Financiación Autonómica
dc.relation.ispartofMathematics, vol. 9, n. 1.
dc.relation.projectIDGVA/2019/124
dc.relation.projectIDRTI2018-093521-B-C32
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectAlgoritmos.
dc.subjectAlgorithms.
dc.subjectÁlgebra de tensores.
dc.subjectDescomposición (Matemáticas)
dc.subjectEcuaciones en derivadas parciales.
dc.subjectDifferential equations, Partial.
dc.subjectDecomposition (Mathematics)
dc.subjectTensor algebra.
dc.titleTowards a vector field based approach to the Proper Generalized Decomposition (PGD)
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublicationf1ace399-acc8-40f9-ad4f-3106b502ca0c
relation.isAuthorOfPublication09097a7b-4862-4eee-b30e-01a627e28ff9
relation.isAuthorOfPublication.latestForDiscovery9596df8c-5f91-4c71-9587-f431b684e53d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Towards_Falco_MATHEMATICS_2021.pdf
Size:
329.4 KB
Format:
Adobe Portable Document Format