On non-smooth pitchfork bifurcations in invertible quasi-periodically forced 1-D maps
dc.centro | Universidad Cardenal Herrera-CEU | |
dc.contributor.author | Jorba Monte, Àngel | |
dc.contributor.author | Tatjer Montaña, Joan Carles | |
dc.contributor.author | Muñoz Almaraz, Francisco Javier | |
dc.contributor.other | Producción Científica UCH 2018 | |
dc.contributor.other | UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas | |
dc.date | 2018 | |
dc.date.accessioned | 2019-11-20T05:01:29Z | |
dc.date.available | 2019-11-20T05:01:29Z | |
dc.date.issued | 2018-11-20 | |
dc.description | Este artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://www.tandfonline.com/doi/abs/10.1080/10236198.2017.1331889 | |
dc.description | This is the pre-peer reviewed version of the following article: Jorba, À., Muñoz-Almaraz, FJ. & Tatjer, JC. (2018). On non-smooth pitchfork bifurcations in invertible quasi-periodically forced 1-D maps. Journal of Difference Equations and Applications, vol. 24, n. 4, pp. 588-608, which has been published in final form at https://doi.org/10.1080/10236198.2017.1331889 | |
dc.description | Este es el pre-print del siguiente artículo: Jorba, À., Muñoz-Almaraz, FJ. & Tatjer, JC. (2018). On non-smooth pitchfork bifurcations in invertible quasi-periodically forced 1-D maps. Journal of Difference Equations and Applications, vol. 24, n. 4, pp. 588-608, que se ha publicado de forma definitiva en https://doi.org/10.1080/10236198.2017.1331889 | |
dc.description.abstract | In this note we revisit an example introduced by T. J ager in which a Strange Nonchaotic Attractor seems to appear during a pitchfork bifurcation of invariant curves in a quasi-periodically forced 1-d map. In this example, it is remarkable that the map is invertible and, hence, the invariant curves are always reducible. In the rst part of the paper we give a numerical description (based on a precise computation of invariant curves and Lyapunov exponents) of the phenomenon. The second part consists in a preliminary study of the phenomenon, in which we prove that an analytic self-symmetric invariant curve is persistent under perturbations. | |
dc.description.version | Preprint | |
dc.format | application/pdf | |
dc.identifier.citation | Jorba, À., Muñoz-Almaraz, FJ. & Tatjer, JC. (2018). On non-smooth pitchfork bifurcations in invertible quasi-periodically forced 1-D maps. Journal of Difference Equations and Applications, vol. 24, n. 4, pp. 588-608. DOI: https://doi.org/10.1080/10236198.2017.1331889 | |
dc.identifier.doi | https://doi.org/10.1080/10236198.2017.1331889 | |
dc.identifier.issn | 1023-6198 | |
dc.identifier.issn | 1563-5120 (Electrónico) | |
dc.identifier.uri | http://hdl.handle.net/10637/10710 | |
dc.language.iso | es | |
dc.language.iso | en | |
dc.publisher | Informa UK. | |
dc.relation | A. J. y J. C. T han sido financiados por el Ministerio de Economía y Competitividad del Gobierno de España y por el FEDER (MTM2015-67724-P) y por la Generalitat de Catalunya (2014 SGR 1145). F. J. M.-A. ha sido financiado por el Ministerio de Economía y Competitividad del Gobierno de España (MTM2012-31821). | |
dc.relation | UCH. Financiación Nacional | |
dc.relation.ispartof | Journal of Difference Equations and Applications, vol. 24, n. 4 (2018). | |
dc.relation.projectID | MTM2012-31821 | |
dc.rights | open access | |
dc.rights.cc | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | Sistemas dinámicos diferenciables. | |
dc.subject | Differentiable dynamical systems. | |
dc.subject | Curvas. | |
dc.subject | Symmetry. | |
dc.subject | Differential equations. | |
dc.subject | Curves. | |
dc.subject | Simetría. | |
dc.subject | Ecuaciones diferenciales. | |
dc.title | On non-smooth pitchfork bifurcations in invertible quasi-periodically forced 1-D maps | |
dc.type | Artículo | |
dspace.entity.type | Publication | es |
relation.isAuthorOfPublication | edaa619b-8147-4b5f-9c98-4fd8d5368740 | |
relation.isAuthorOfPublication.latestForDiscovery | edaa619b-8147-4b5f-9c98-4fd8d5368740 |
Files
Original bundle
1 - 1 of 1