Evaluation of change point detection algorithms for application in Big Data Mini-term 4.0

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorGarcía Magraner, Eduardo Andrés
dc.contributor.authorLlopis Ballester, Javier
dc.contributor.authorLacasa Corral, Antonio
dc.contributor.authorMontés Sánchez, Nicolás
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.contributor.otherProducción Científica UCH 2020
dc.date2020
dc.date.accessioned2021-06-02T04:00:10Z
dc.date.available2021-06-02T04:00:10Z
dc.date.issued2020-07-07
dc.descriptionEste artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://www.scitepress.org/Papers/2020/95940/95940.pdf
dc.descriptionEste artículo pertenece a la 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2020) - Online streaming, 7-9 July 2020.
dc.description.abstractThe present study analyses in depth the algorithms of change point detection in time series for the prediction of failures through the monitoring of mini-terms in real time. The mini-term is a new concept in the area of failure prediction that is based on the measurement of the time it takes for a component to perform its task. The simplicity of the technique has made it feasible to build industrial Big Data for the prediction of failures based on this concept. There are currently more than 11,000 sensorized mini-terms at Ford factory in Almussafes (Valencia). For the present study, 10 representative real cases of the different change points that have been detected up to the present were selected and, these cases were analysed by using the change point algorithms, which are representative of the great majority of algorithms described in the literature in their different versions. As a result, their accuracy was measured when detecting the change point and its computational cost. A discussion of the results is shown at the end of the paper.
dc.formatapplication/pdf
dc.identifier.citationGarcia, E., Montes, N., Llopis, J. and Lacasa, A. (2020). Evaluation of change point detection algorithms for application in Big Data Mini-term 4.0. In Proceedings of the 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO), pp. 117-124. ISSN 2184-2809. ISBN 978-989-758-442-8. DOI: https://doi.org/10.5220/0009594001170124
dc.identifier.doihttps://doi.org/10.5220/0009594001170124
dc.identifier.isbn9789897584428.
dc.identifier.urihttp://hdl.handle.net/10637/12717
dc.language.isoen
dc.publisherScience and Technology Publications.
dc.relation.ispartofProceedings of the 17th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2020).
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectIndustria del automóvil - Producción.
dc.subjectAutomóviles - Fabricación - Teledetección.
dc.subjectAutomóviles - Producción.
dc.subjectAutomobiles - Production.
dc.subjectBig data in Automobile industry and trade.
dc.subjectIndustria del automóvil - Automatización.
dc.subjectAutomobile industry and trade - Automation.
dc.subjectAutomobiles - Manufacturing - Remote sensing.
dc.subjectDatos masivo - Aplicaciones en industria del automóvil.
dc.subjectAutomobile industry and trade - Production.
dc.titleEvaluation of change point detection algorithms for application in Big Data Mini-term 4.0
dc.typeComunicación
dspace.entity.typePublicationes
relation.isAuthorOfPublication09097a7b-4862-4eee-b30e-01a627e28ff9
relation.isAuthorOfPublication.latestForDiscovery09097a7b-4862-4eee-b30e-01a627e28ff9

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Evaluation_Garcia_ICINCO_2020.pdf
Size:
1.02 MB
Format:
Adobe Portable Document Format