Principal bundle structure of matrix manifolds

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorBillaud Friess, Marie
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorNouy, Anthony
dc.contributor.otherProducción Científica UCH 2021
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.date2021
dc.date.accessioned2022-03-31T04:00:23Z
dc.date.available2022-03-31T04:00:23Z
dc.date.issued2021-07-15
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/2227-7390/9/14/1669
dc.descriptionEste artículo de investigación pertenece al número especial "Differential Geometry: Structures on Manifolds and Their Applications".
dc.description.abstractIn this paper, we introduce a new geometric description of the manifolds of matrices of fixed rank. The starting point is a geometric description of the Grassmann manifold Gr(Rk) of linear subspaces of dimension r < k in Rk, which avoids the use of equivalence classes. The set Gr(Rk) is equipped with an atlas, which provides it with the structure of an analytic manifold modeled on R(k􀀀r) r. Then, we define an atlas for the set Mr(Rk r) of full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rk) and typical fibre GLr, the general linear group of invertible matrices in Rk k. Finally, we define an atlas for the setMr(Rn m) of non-full rank matrices and prove that the resulting manifold is an analytic principal bundle with base Gr(Rn) Gr(Rm) and typical fibre GLr. The atlas ofMr(Rn m) is indexed on the manifold itself, which allows a natural definition of a neighbourhood for a given matrix, this neighbourhood being proved to possess the structure of a Lie group. Moreover, the setMr(Rn m) equipped with the topology induced by the atlas is proven to be an embedded submanifold of the matrix space Rn m equipped with the subspace topology. The proposed geometric description then results in a description of the matrix space Rn m, seen as the union of manifoldsMr(Rn m), as an analytic manifold equipped with a topology for which the matrix rank is a continuous map.
dc.formatapplication/pdf
dc.identifier.citationBillaud-Friess, M., Falcó, A. & Nouy, A. (2021). Principal bundle structure of matrix manifolds. Mathematics, vol. 9, i. 14 (15 jul.), art. 1669. DOI: https://doi.org/10.3390/math9141669
dc.identifier.doihttps://doi.org/10.3390/math9141669
dc.identifier.issn2227-7390 (Electrónico)
dc.identifier.urihttp://hdl.handle.net/10637/13579
dc.language.isoen
dc.language.isoes
dc.publisherMDPI
dc.relationEste artículo de investigación ha sido financiado por el Ministerio de Ciencia, Innovación y Universidades (MICINN) a través de el proyecto RTI2018-093521-B-C32 y por la Universidad CEU Cardenal Herrera a través de la ayuda INDI20/13.
dc.relationUCH. Financiación Nacional
dc.relationUCH. Financiación Universidad
dc.relation.ispartofMathematics, vol. 9, n. 14 (15 jul. 2021)
dc.relation.projectIDRTI2018-093521-B-C32
dc.relation.projectIDINDI20/13
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectTopología diferencial.
dc.subjectDifferential topology.
dc.subjectVariedades (Matemáticas)
dc.subjectGrassmann, Variedades de.
dc.subjectGrassmann manifolds.
dc.subjectGeometría diferencial.
dc.subjectGeometry, Differential.
dc.subjectManifolds (Mathematics)
dc.titlePrincipal bundle structure of matrix manifolds
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublication.latestForDiscovery9596df8c-5f91-4c71-9587-f431b684e53d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Principal_Billaud_MATHEMATICS_2021.pdf
Size:
497.81 KB
Format:
Adobe Portable Document Format