On the Dirac-Frenkel variational principle on tensor banach spaces

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorHackbusch, Wolfgang
dc.contributor.authorNouy, Anthony
dc.contributor.otherProducción Científica UCH 2019
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.date2019
dc.date.accessioned2020-09-10T04:00:24Z
dc.date.available2020-09-10T04:00:24Z
dc.date.issued2019-02-01
dc.descriptionEste artículo se encuentra disponible en la página web de la revista en la siguiente URL: https://link.springer.com/article/10.1007/s10208-018-9381-4
dc.descriptionEste documento se encuentra disponible en: https://arxiv.org/pdf/1610.09865.pdf
dc.descriptionEste es el pre-print del siguiente artículo Falcó, A., Hackbusch, W. & Nouy, A. (2019). On the Dirac-Frenkel variational principle on tensor banach spaces. Foundations of Computational Mathematics, vol. 19, n. 1 (feb.), pp. 159-204, que se ha publicado de forma definitiva en https://doi.org/10.1007/s10208-018-9381-4
dc.descriptionThis is the pre-peer reviewed version of the following article: Falcó, A., Hackbusch, W. & Nouy, A. (2019). On the Dirac-Frenkel variational principle on tensor banach spaces. Foundations of Computational Mathematics, vol. 19, n. 1 (feb.), pp. 159-204, which has been published in final form at https://doi.org/10.1007/s10208-018-9381-4
dc.description.abstractThe main goal of this paper is to extend the so-called Dirac-Frenkel Variational Principle in the framework of tensor Banach spaces. To this end we observe that a tensor product of normed spaces can be described as a union of disjoint connected components. Then we show that each of these connected components, composed by tensors in Tucker format with a fixed rank, is a Banach manifold modelled in a particular Banach space, for which we provide local charts. The description of the local charts of these manifolds is crucial for an algorithmic treatment of high-dimensional partial differential equations and minimization problems. In order to describe the relationship between these manifolds and the natural ambient space we prove under natural conditions that each connected component can be immersed in a particular ambient Banach space. This fact allows us to finally extend the Dirac-Frenkel variational principle in the framework of topological tensor spaces.
dc.formatapplication/pdf
dc.identifier.citationFalcó, A., Hackbusch, W. & Nouy, A. (2019). On the Dirac-Frenkel variational principle on tensor banach spaces. Foundations of Computational Mathematics, vol. 19, n. 1 (feb.), pp. 159-204. DOI: https://doi.org/10.1007/s10208-018-9381-4
dc.identifier.doihttps://doi.org/10.1007/s10208-018-9381-4
dc.identifier.issn1615-3375
dc.identifier.issn1615-3383 (Electrónico)
dc.identifier.urihttp://hdl.handle.net/10637/11648
dc.language.isoen
dc.publisherSpringer Nature.
dc.relation.ispartofFoundations of Computational Mathematics, vol. 19, n. 1 (feb. 2019).
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectBanach spaces.
dc.subjectEspacios generalizados.
dc.subjectGeneralized spaces.
dc.subjectCalculus of tensors.
dc.subjectGeometry, Differential.
dc.subjectBanach, Espacios de.
dc.subjectCálculo tensorial.
dc.subjectGeometría diferencial.
dc.titleOn the Dirac-Frenkel variational principle on tensor banach spaces
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublication.latestForDiscovery9596df8c-5f91-4c71-9587-f431b684e53d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dirac-Frenkel_Falco_FCM_2019.pdf
Size:
401.55 KB
Format:
Adobe Portable Document Format