A 3D-printed passive exoskeleton for upper limb assistance in children with motor disorders: proof of concept through an electromyography-based assessment

dc.centroUniversidad San Pablo-CEU
dc.contributor.authorSánchez López de Pablo, Cristina
dc.contributor.authorBlanco-Dolado, Laura
dc.contributor.authorUrendes Jiménez, Eloy José
dc.contributor.authorRío, Carmina del
dc.contributor.authorCosta Cortez, Vanina
dc.contributor.authorRaya López, Rafael
dc.contributor.otherUniversidad CEU San Pablo. Escuela Politécnica Superior. Departamento de Tecnologías de la Información
dc.contributor.otherGrupo: Laboratorio de Ingeniería Biomédica (Biomedical Engineering Laboratory) (BIOLAB)
dc.date.accessioned2024-01-19T14:16:31Z
dc.date.available2024-01-19T14:16:31Z
dc.date.issued2023-03-29
dc.description.abstractThe rehabilitation of children with motor disorders is mainly focused on physical interventions. Numerous studies have demonstrated the benefits of upper function using robotic exoskeletons. However, there is still a gap between research and clinical practice, owing to the cost and complexity of these devices. This study presents a proof of concept of a 3D-printed exoskeleton for the upper limb, following a design that replicates the main characteristics of other effective exoskeletons described in the literature. 3D printing enables rapid prototyping, low cost, and easy adjustment to the patient anthropometry. The 3D-printed exoskeleton, called POWERUP, assists the user's movement by reducing the effect of gravity, thereby allowing them to perform upper limb exercises. To validate the design, this study performed an electromyographybased assessment of the assistive performance of POWERUP, focusing on the muscular response of both the biceps and triceps during elbow flexion extension movements in 11 healthy children. The Muscle Activity Distribution (MAD) is the proposed metric for the assessment. The results show that (1) the exoskeleton correctly assists elbow flexion, and (2) the proposed metric easily identifies the exoskeleton configuration: statistically significant differences (p-value D 2.26 10􀀀7 < 0.001) and a large effect size (Cohen's d D 3.78 > 0.8) in the mean MAD value were identified for both the biceps and triceps when comparing the transparent mode (no assistance provided) with the assistive mode (anti-gravity effect). Therefore, this metric was proposed as a method for assessing the assistive performance of exoskeletons. Further research is required to determine its usefulness for both the evaluation of selective motor control (SMC) and the impact of robot-assisted therapies.en-EN
dc.formatapplication/pdf
dc.identifier.citationSanchez C, Blanco L, Del Río C, Urendes E, Costa V, Raya R. A 3D-printed passive exoskeleton for upper limb assistance in children with motor disorders: proof of concept through an electromyography-based assessment. PeerJ. 2023 Mar 29;11:e15095. doi: 10.7717/peerj.15095. PMID: 37013145; PMCID: PMC10066689.en-EN
dc.identifier.doi10.7717/peerj.15095
dc.identifier.issn2376-5992
dc.identifier.urihttp://hdl.handle.net/10637/15019
dc.language.isoenes_ES
dc.relation.ispartofPeer J.
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subject3D printingen_EN
dc.subjectChildrenen_EN
dc.subjectElectromyographyen_EN
dc.subjectMotor disordersen_EN
dc.subjectPassive exoskeletonen_EN
dc.subjectUpper limben_EN
dc.titleA 3D-printed passive exoskeleton for upper limb assistance in children with motor disorders: proof of concept through an electromyography-based assessmenten_EN
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication8320d70d-3316-4937-960d-b1a686163bd9
relation.isAuthorOfPublication693b6aca-00dc-4eae-a343-5dbf6464ee60
relation.isAuthorOfPublicationf0782cdd-d704-4c5a-a4a0-2498933a6dfe
relation.isAuthorOfPublication361eec59-88e5-4ba1-9d44-aac90b67b938
relation.isAuthorOfPublication.latestForDiscovery8320d70d-3316-4937-960d-b1a686163bd9

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
3D_Sanchez_et_al_PeerJ_2023.pdf
Size:
7.18 MB
Format:
Adobe Portable Document Format