miR-16-5p Suppression Protects Human Cardiomyocytes against Endoplasmic Reticulum and Oxidative Stress-Induced Injury

dc.centroUniversidad San Pablo-CEU
dc.contributor.authorToro Cebada, Rocío
dc.contributor.authorCarrera Puerta, Esther
dc.contributor.authorPerez-Serra, Alexandra
dc.contributor.authorMangas Rojas, Alipio
dc.contributor.authorCampuzano, Oscar
dc.contributor.authorSarquella-Brugada, Georgia
dc.contributor.authorQuezada‑Feijoo, Maribel
dc.contributor.authorRamos, Mónica
dc.contributor.authorGarcía-Padilla, Carlos
dc.contributor.authorFranco, Diego
dc.contributor.authorBonet Martínez, Fernando
dc.contributor.authorAlcalá Díaz-Mor, Martín
dc.contributor.otherUniversidad San Pablo-CEU. Facultad de Farmacia
dc.contributor.otherGrupo de Metabolismo y Función Vascular (MET-VASC)
dc.date.accessioned2023-12-04T17:31:04Z
dc.date.available2023-12-04T17:31:04Z
dc.date.issued2022-01-18
dc.description.abstractOxidative stress, defined as the excess production of reactive oxygen species (ROS) relative to antioxidant defense, plays a significant role in the development of cardiovascular diseases. Endoplasmic reticulum (ER) stress has emerged as an important source of ROS and its modulation could be cardioprotective. Previously, we demonstrated that miR-16-5p is enriched in the plasma of ischemic dilated cardiomyopathy (ICM) patients and promotes ER stress-induced apoptosis in cardiomyocytes in vitro. Here, we hypothesize that miR-16-5p might contribute to oxidative stress through ER stress induction and that targeting miR-16-5p may exert a cardioprotective role in ER stress-mediated cardiac injury. Analysis of oxidative markers in the plasma of ICM patients demonstrates that oxidative stress is associated with ICM. Moreover, we confirm that miR-16-5p overexpression promotes oxidative stress in AC16 cardiomyoblasts. We also find that, in response to tunicamycin-induced ER stress, miR-16-5p suppression decreases apoptosis, inflammation and cardiac damage via activating the ATF6-mediated cytoprotective pathway. Finally, ATF6 is identified as a direct target gene of miR-16-5p by dual-luciferase reporter assays. Our results indicate that miR-16-5p promotes ER stress and oxidative stress in cardiac cells through regulating ATF6, suggesting that the inhibition of miR-16-5p has potential as a therapeutic approach to protect the heart against ER and oxidative stress-induced injury.en_EN
dc.formatapplication/pdf
dc.identifier.citationToro, R.; Pérez-Serra, A.; Mangas, A.; Campuzano, O.; Sarquella-Brugada, G.; Quezada-Feijoo, M.; Ramos, M.; Alcalá, M.; Carrera, E.; García-Padilla, C.; et al.miR-16-5p Suppression Protects Human Cardiomyocytes against Endoplasmic Reticulumand Oxidative Stress-Induced Injury. Int. J. Mol. Sci. 2022, 23, 1036. https://doi.org/ 10.3390/ijms23031036es_ES
dc.identifier.doi10.3390/ijms23031036
dc.identifier.issn1422-0067
dc.identifier.urihttp://hdl.handle.net/10637/14697
dc.language.isoenen
dc.publisherMDPIen_En
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.relation.projectIDEiuropean Regional Development Fund (ERDF) Integrated Territorial Initiative (ITI PI0048-2017 and ITI0033_2019), a clinical research grant from the Spanish Society of Cardiology for Basic Research in cardiology (PI0012_2019), Plan Propio de INIBICA (PI-INBICA 2019-13).
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectmiR-16-5pen_EN
dc.subjectIschemic dilated cardiomyopathyen_EN
dc.subjectReactive oxygen speciesen_EN
dc.subjectEndoplasmic reticulum stressen_EN
dc.subjectATF6en_EN
dc.titlemiR-16-5p Suppression Protects Human Cardiomyocytes against Endoplasmic Reticulum and Oxidative Stress-Induced Injuryen_EN
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublicationa4efa490-e61e-40e8-94cb-5b49d3e2c8b9
relation.isAuthorOfPublicationfcfb5f37-36b8-4325-b008-5bfcba14dbfe
relation.isAuthorOfPublication.latestForDiscoverya4efa490-e61e-40e8-94cb-5b49d3e2c8b9

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Suppression_Toro_et_al_Int_J_Mol_Sci_2022.pdf
Size:
3.43 MB
Format:
Adobe Portable Document Format
Description: