Real-time path planning based on harmonic functions under a Proper Generalized Decomposition-Based framework

dc.centroUniversidad Cardenal Herrera-CEU
dc.contributor.authorFalcó Montesinos, Antonio
dc.contributor.authorChinesta, Francisco
dc.contributor.authorMora Aguilar, Marta Covadonga
dc.contributor.authorNadal Soriano, Enrique
dc.contributor.authorHilario Pérez, Lucía
dc.contributor.authorMontés Sánchez, Nicolás
dc.contributor.authorRosillo Guerrero, Nuria
dc.contributor.otherUCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas
dc.contributor.otherProducción Científica UCH 2021
dc.date2021
dc.date.accessioned2022-04-01T04:00:24Z
dc.date.available2022-04-01T04:00:24Z
dc.date.issued2021-06-08
dc.descriptionEste artículo se encuentra disponible en la siguiente URL: https://www.mdpi.com/1424-8220/21/12/3943
dc.descriptionEste artículo de investigación pertenece al número especial "Autonomous Navigation in Robotics: A New Challenge towards Social Robots".
dc.description.abstractThis paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property of the proposed technique is that the computational cost is negligible in real-time, even if the robot is disturbed or the goal is changed. The main idea of the method is the off-line generation, for a given environment, of the whole set of paths from any start and goal configurations of a mobile robot, namely the computational vademecum, derived from a harmonic potential field in order to use it on-line for decision-making purposes. Up until now, the resolution of the Laplace or Poisson equations has been based on traditional numerical techniques unfeasible for real-time calculation. This drawback has prevented the extensive use of harmonic functions in autonomous navigation, despite their powerful properties. The numerical technique that reverses this situation is the Proper Generalized Decomposition. To demonstrate and validate the properties of the PGD-vademecum in a potential-guided path planning framework, both real and simulated implementations have been developed. Simulated scenarios, such as an L-Shaped corridor and a benchmark bug trap, are used, and a real navigation of a LEGO®MINDSTORMS robot running in static environments with variable start and goal configurations is shown. This device has been selected due to its computational and memory-restricted capabilities, and it is a good example of how its properties could help the development of social robots.
dc.formatapplication/pdf
dc.identifier.citationMontés, N., Chinesta, F., Mora, M. C., Falcó, A., Hilario, L., Rosillo, N. & Nadal, E. (2021). Real-time path planning based on harmonic functions under a Proper Generalized Decomposition-Based framework. Sensors, vol. 21, i. 12 (08 jun.), art. 3943. DOI: http://dx.doi.org/10.3390/s21123943
dc.identifier.doihttps://doi.org/10.3390/s21123943
dc.identifier.issn1424-8220 (Electrónico)
dc.identifier.urihttp://hdl.handle.net/10637/13589
dc.language.isoen
dc.language.isoes
dc.publisherMDPI
dc.relationEste artículo de investigación ha sido financiado por la Universidad CEU Cardenal Herrera (INDI20/13).
dc.relation.ispartofSensors, vol. 21, n. 12 (08 jun. 2021)
dc.relation.projectIDINDI20/13
dc.rightsopen access
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
dc.subjectRobótica.
dc.subjectFunciones armónicas.
dc.subjectHarmonic functions.
dc.subjectDescomposición (Matemáticas)
dc.subjectDifferential equations, Partial.
dc.subjectRobotics.
dc.subjectAutómatas matemáticos, Teoria de.
dc.subjectMachine theory.
dc.subjectEcuaciones en derivadas parciales.
dc.subjectDecomposition (Mathematics)
dc.titleReal-time path planning based on harmonic functions under a Proper Generalized Decomposition-Based framework
dc.typeArtículo
dspace.entity.typePublicationes
relation.isAuthorOfPublication9596df8c-5f91-4c71-9587-f431b684e53d
relation.isAuthorOfPublicationf1ace399-acc8-40f9-ad4f-3106b502ca0c
relation.isAuthorOfPublication09097a7b-4862-4eee-b30e-01a627e28ff9
relation.isAuthorOfPublication88a895e1-6a1a-4b6a-952c-79f03c8888a6
relation.isAuthorOfPublication.latestForDiscovery9596df8c-5f91-4c71-9587-f431b684e53d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Real-time_Montes_SENSORS_2021.pdf
Size:
6.65 MB
Format:
Adobe Portable Document Format