Loading...
Profile Picture
Imagen Dialnet0

Quereda Torres, Juan José

Research Projects

Organizational Units

Job Title

Profesor Titular

Faculty

Facultad de Veterinaria / Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos (PASAPTA)

University of origin

Email

Name

Search Results

Now showing 1 - 10 of 19
  • Thumbnail Image
    Publication
    UCH
    Prácticas de laboratorio : técnicas básicas de genética molecular2020-09-01

    La genética molecular es la rama de la genética que analiza, a nivel molecular, la estructura y la función del material genético basándose en métodos de biología molecular. A finales del siglo XX se empezaron a implementar técnicas con el fin de aislar, analizar y manipular a los ácidos nucleicos, así como a las proteínas codificadas por estos, dando lugar a la ciencia de la Biología Molecular. En 1973 Stanley Cohen (Standford University) y Herbert Boyer y cols. (University of California School of Medicine at San Francisco) insertaron un fragmento de ADN de un plásmido en otro, creando una molécula de ADN recombinante totalmente nueva, revolucionando así la biología. Anteriormente, la información acerca de la estructura y la organización de los genes se obtenía examinando sus efectos fenotípicos, pero el análisis genético molecular permite incluso leer las propias secuencias nucleotídicas, aportando nueva información sobre la estructura y la función de los genes. Las técnicas genéticas moleculares son múltiples y se emplean actualmente en muchos campos: además de en biología, se utiliza en ramas como la bioquímica, microbiología, biología del desarrollo, neurobiología, evolución, ecología y, por descontado, en diversas ramas de la veterinaria, donde es ahora indispensable para el diagnóstico de enfermedades o la selección de individuos en animales de compañía o ganadería, entre otros. Este manual tiene como objetivo proveer a los estudiantes del Grado en Veterinaria de la Universidad CEU Cardenal Herrera de las competencias necesarias para llevar a cabo algunas de las técnicas más empleadas durante el desarrollo de la investigación veterinaria y de la práctica clínica. Para ello, se incluye la descripción clara de los fundamentos teóricos de los principales métodos y la explicación, paso a paso, de las técnicas empleadas.

  • Thumbnail Image
    Publication
    UCH
    Profiling human CD55 transgene performance assist in selecting best suited specimens and tissues for swine organ xenotransplantation2021-08-04

    Xenotransplantation of pig organs receives substantial attention for being comparable to human’s. However, compatibility constraints involving hyper-acute rejection (HAR) still block clinical applications. Transgenesis of human complement regulatory proteins has been proposed to overcome xenorejection. Pigs expressing human-CD55 have been widely tested in experimental surgery. Still, no standardized method has been developed to determine tissue expression of human decay-accelerating factor (DAF), hCD55’s product, or to predict the ability to overpass HAR. Here we describe objective procedures addressing this need. Organs and tissues from five hCD55 transgenic pigs were collected and classified according to their xenotransplantation value. The ability to overcome HAR was assessed by classical complement pathway hemolysis assays. Quantitative PCR mRNA expression and Western blot protein level studies were performed. Real-time cytotoxicity assays (RTCA) on fibroblast cultures exposed to baboon and human sera informed on longer-term rejection dynamics. While greater hCD55/DAF expression correlated with better performance, the results obtained varied among specimens. Interestingly, the individual with highest mRNA and protein levels showed positive feedback for hCD55 transcript after challenge with human and baboon sera. Moreover, hCD55 expression correlated to DAF levels in the liver, lung and intestine, but not in the heart. Moreover, we found significant correlations among valuable and non-valuable tissues. In sum, the methodology proposed allows us to characterize the hCD55 transgene functioning and performance. Moreover, the correlations found could allow us to predict hCD55/DAF expression in surrogate tissues, thus eliminating the need for direct biopsies, resulting in preservation of organ integrity before xenotransplantation.

  • Thumbnail Image
    Publication
    UCH
    Vaginal microbiota changes during estrous cycle in dairy heifers2020-07-03

    The vaginal microbiota plays an important role in the health of dairy cattle, and it could be manipulated for the prevention and treatment of reproduction-related infections. The present study profiles and compares the vaginal microbiota of healthy dairy heifers during the estrous cycle focusing the results in follicular (estrus) and luteal (diestrus) phases using 16S rRNA sequencing of the V3–V4 hypervariable region. Twenty 13–16-months-old virgin dairy heifers from a single farm were included in this study. Vaginal swabs and blood samples were obtained during estrus (6–8 h before artificial insemination) and diestrus (14 days after insemination). Estrus was evaluated by an activity monitoring system and confirmed with plasma progesterone immunoassay. Results showed that the taxonomic composition of the vaginal microbiota was different during the follicular and luteal phases. At the phylum level, the most abundant bacterial phyla were Tenericutes, Firmicutes, and Bacteroidetes which comprised more than 75%of the vaginal microbiota composition. The next more abundant phyla, in order of decreasing abundance, were Proteobacteria, Actinobacteria, Fusobacteria, Epsilonbacteraeota, and Patescibacteria. Together with Tenericutes, Firmicutes, and Bacteroidetes represented more than 96% of the bacterial composition. Ureaplasma, Histophilus, f_Corynebacteriaceae, Porphyromonas, Mycoplasma, Ruminococcaceae UCG-005, were the most abundant genera or families. The results also showed that the vaginal microbiota of dairy heifers was non-lactobacillus dominant. The genus Lactobacillus was always found at a low relative abundance during the estrous cycle being more abundant in the follicular than in the luteal phase. Despite more research is needed to explore the potential use of native vaginal microbiota members as probiotics in dairy heifers, this study represents an important step forward. Understanding how the microbiota behaves in healthy heifers will help to identify vaginal dysbiosis related to disease.

  • Thumbnail Image
    Publication
    UCH
    Vaginal microbiota is stable throughout the estrous cycle in Arabian mares2020-11-03

    Lactic acid bacteria (LAB) dominate human vaginal microbiota and inhibit pathogen proliferation. In other mammals, LAB do not dominate vaginal microbiota, however shifts of dominant microorganisms occur during ovarian cycle. The study objectives were to characterize equine vaginal microbiota in mares by culture-dependent and independent methods and to describe its variation in estrus and diestrus. Vaginal swabs from 8 healthy adult Arabian mares were obtained in estrus and diestrus. For culture-dependent processing, bacteria were isolated on Columbia blood agar (BA) and Man Rogosa Sharpe (MRS) agar. LAB comprised only 2% of total bacterial isolates and were not related to ovarian phases. For culture-independent processing, V3/V4 variable regions of the 16S ribosomal RNA gene were amplified and sequenced using Illumina Miseq. The diversity and composition of the vaginal microbiota did not change during the estrous cycle. Core equine vaginal microbiome consisted of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria at the phylum level. At the genus level it was defined by Porphyromonas, Campylobacter, Arcanobacterium, Corynebacterium, Streptococcus, Fusobacterium, uncultured Kiritimatiaellae and Akkermansia. Lactobacillus comprised only 0.18% of the taxonomic composition in estrus and 0.37% in diestrus. No di erences in the relative abundance of the most abundant phylum or genera were observed between estrus and diestrus samples.

  • Thumbnail Image
    Publication
    UCH
    Listeriolysin S : a bacteriocin from "Listeria monocytogenes" that induces membrane permeabilization in a contact-dependent manner2021-10-01

    Listeriolysin S (LLS) is a thiazole/oxazole–modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes. LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy,we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.

  • Thumbnail Image
    Publication
    UCH
    Search of antimicrobial lactic acid bacteria from "Salmonella"-negative dogs2022-01-03

    Background: Salmonellosis is one of the most important food-borne zoonotic disease affecting both animals and humans. The objective of the present study was to identify gastrointestinal (GI) lactic acid bacteria (LAB) of canineorigin from Salmonella-negative dogs’ faeces able to inhibit monophasic Salmonella Typhimurium previously isolated from dogs’ faeces, in order to be used as a potential probiotic in pet nutrition. Results: Accordingly, 37 LAB were isolated from Salmonella-negative dogs’ faeces and tested against monophasic S. Typhimurium using the spot on lawn method out of which 7 strains showed an inhibition halo higher than 2.5 cm. These 7 strains were also tested with the co-culture method and one showed the greatest inhibition value (p < 0.05). Subsequently, the isolate was identified through 16S rRNA sequencing and sequence homology and designated as Ligilactobacillus salivarius (L. salivarius). LAB from Salmonella-positive dogs were also identified and none was the selected strain. Finally, to identify the mechanism of inhibition of L. salivarius, the supernatant was analyzed, and a dose response effect was observed. Conclusions: It is concluded that the canine-origin L. salivarius, could possess some in vitro functional attributes of a candidate probiotic and could prevent monophasic S. Typhimurium colonization or inhibit its activity if the infection occurs.

  • Thumbnail Image
    Publication
    UCH
    Phenotypic and genotypic antimicrobial resistance of "Listeria spp." in Spain2024-06

    Listeriosis is a zoonotic disease caused by Listeria monocytogenes and Listeria ivanovii. The genus Listeria currently includes 27 recognized species and is found throughout the environment. The number of systematic studies on antimicrobial resistance in L. monocytogenes isolates from domestic farms using antimicrobial substances is limited. Importantly, dairy ruminant farms are reservoir of hypervirulent lineage I L. monocytogenes isolates, previously associated with human clinical cases. Considering that the classes of antibiotics used in food-producing domestic animals are frequently the same or closely related to those used in human medicine, studies about the impact of antibiotic use on the acquisition of antibiotic resistance in Listeria spp. in domestic animal farms are, therefore, of high importance. Here, susceptibility to 25 antibiotics was determined. Eighty-one animal-related, 35 food and 21 human pathogenic Listeria spp. isolates and 114 animal-related non-pathogenic Listeria spp. isolates were tested. Whole genome sequencing data was used for molecular characterization. Regarding L. monocytogenes, 2 strains from the clinical-associated linage I showed resistance to erythromycin, both related to dairy ruminants. Acquired resistance to one antibiotic was exhibited in 1.5% of L. monocytogenes isolates compared with 14% of non-pathogenic Listeria spp. isolates. Resistance to tetracycline (7.9%), doxycycline (7.9%), penicillin (4.4%), and ampicillin (4.4%) were the most frequently observed in non-pathogenic Listeria spp. While resistance to two or more antibiotics (5.6%) was most common in Listeria spp., isolates, resistance to one antibiotic was also observed (1.6%). The present results show that non-pathogenic Listeria spp. harbour antimicrobial resistance genes.

  • Thumbnail Image
    Publication
    UCH
    A role for Taok2 in "Listeria monocytogenes" vacuolar escape2022-03-15

    The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.

  • Thumbnail Image
    Publication
    UCH
    Reassessing the role of internalin B in Listeria monocytogenes virulence using the epidemic strain F23652019-02-13

    Objectives: To investigate the contribution to virulence of the surface protein internalin B (InlB) in the Listeria monocytogenes lineage I strain F2365, which caused a deadly listeriosis outbreak in California in 1985. Methods: The F2365 strain displays a point mutation that hampers expression of InlB. We rescued the expression of InlB in the L. monocytogenes lineage I strain F2365 by introducing a point mutation in the codon 34 (TAA to CAA). We investigated its importance for bacterial virulence using in vitro cell infection systems and a murine intravenous infection model. Results: In HeLa and JEG-3 cells, the F2365 InlBþ strain expressing InlB was z9-fold and z1.5-fold more invasive than F2365, respectively. In livers and spleens of infected mice at 72 hours after infection, bacterial counts for F2365 InlBþ were significantly higher compared to the F2365 strain (z1 log more), and histopathologic assessment showed that the F2365 strain displayed a reduced number of necrotic foci compared to the F2365 InlBþ strain (Mann-Whitney test). Conclusions: InlB plays a critical role during infection of nonpregnant animals by a L. monocytogenes strain from lineage I. A spontaneous mutation in InlB could have prevented more severe human morbidity and mortality during the 1985 California listeriosis outbreak.