Loading...
Profile Picture
Imagen Dialnet0

Rodríguez de Gortázar Alonso-Villalobos, María Arántzazu

Research Projects

Organizational Units

Job Title

Profesora Titular

Faculty

Faculta de Medicina

University of origin

Email

Name

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    USP
    Osteostatin, a peptide for the future treatment of musculoskeletal diseases2024-03-27

    Nowadays, the treatment of musculoskeletal diseases represents a major challenge in the developed world. Diseases such as osteoporosis, osteoarthritis and arthritis have a high incidence and prevalence as a consequence of population aging, and they are also associated with a socioeconomic burden. Many efforts have been made to find a treatment for these diseases with various levels of success, but new approaches are still needed to deal with these pathologies. In this context, one peptide derived for the C-terminal extreme of the Parathormone related Peptide (PTHrP) called Osteostatin can be useful to treat musculoskeletal diseases. This pentapeptide (TRSAW) has demonstrated both in different in vitro and in vivo models, its role as a molecule with anti-resorptive, anabolic, anti-inflammatory, and anti-antioxidant properties. Our aim with this work is to review the Osteostatin main features, the knowledge of its mechanisms of action as well as its possible use for the treatment of osteoporosis, bone regeneration and fractures and against arthritis given its anti-inflammatory properties.

  • Thumbnail Image
    Publication
    USP
    Metabolomics reveals citric acid secretion in mechanically?stimulated osteocytes is inhibited by high glucose.2019-09-16

    Osteocytes are the main cells of bone tissue and play a crucial role in bone formation and resorption. Recent studies have indicated that Diabetes Mellitus (DM) afects bone mass and potentially causes higher bone fracture risk. Previous work on osteocyte cell cultures has demonstrated that mechanotransduction is impaired after culture under diabetic pre-conditioning with high glucose (HG), specifcally osteoclast recruitment and diferentiation. The aim of this study was to analyze the extracellular metabolic changes of osteocytes regarding two conditions: pre-conditioning to either basal levels of glucose (B), mannitol (M) or HG cell media, and mechanical stimulation by fuid fow (FF) in contrast to static condition (SC). Secretomes were analyzed using Liquid Chromatography and Capillary Electrophoresis both coupled to Mass Spectrometry (LC-MS and CE-MS, respectively). Results showed the osteocyte profle was very similar under SC, regardless of their pre-conditioning treatment, while, after FF stimulation, secretomes followed diferent metabolic signatures depending on the preconditioning treatment. An important increment of citrate pointed out that osteocytes release citrate outside of the cell to induce osteoblast activation, while HG environment impaired FF efect. This study demonstrates for the frst time that osteocytes increase citrate excretion under mechanical stimulation, and that HG environment impaired this efect.

  • Thumbnail Image
    Publication
    USP
    PTH1R translocation to primary cilia in mechanically-stimulated ostecytes prevents osteoclast formation via regulation ofCXCL5 and IL?6 secretion2022-07-01

    Osteocytes respond to mechanical forces controlling osteoblast and osteoclast function. Mechanical stimulation decreases osteocyte apoptosis and promotes bone formation. Primary cilia have been described as potential mechanosensors in bone cells. Certain osteogenic responses induced by fluid flow (FF) in vitro are decreased by primary cilia inhibition in MLO‐Y4 osteocytes. The parathyroid hormone (PTH) receptor type 1 (PTH1R) modulates osteoblast, osteoclast, and osteocyte effects upon activation by PTH or PTH‐related protein (PTHrP) in osteoblastic cells. Moreover, some actions of PTH1R seem to be triggered directly by mechanical stimulation. We hypothesize that PTH1R forms a signaling complex in the primary cilium that is essential for mechanotransduction in osteocytes and affects osteocyteosteoclast communication. MLO‐Y4 osteocytes were stimulated by FF or PTHrP (1−37). PTH1R and primary cilia signaling were abrogated using PTH1R or primary cilia specific siRNAs or inhibitors, respectively. Conditioned media obtained from mechanically‐ or PTHrP‐stimulated MLO‐Y4 cells inhibited the migration of preosteoclastic cells and osteoclast differentiation. Redistribution of PTH1R along the entire cilium was observed in mechanically stimulated MLO‐Y4 osteocytic cells. Preincubation of MLO‐Y4 cells with the Gli‐1 antagonist, the adenylate cyclase inhibitor (SQ22536), or with the phospholipase C inhibitor (U73122), affected the migration of osteoclast precursors and osteoclastogenesis. Proteomic analysis and neutralizing experiments showed that FF and PTH1R activation control osteoclast function through the modulation of C‐X‐C Motif Chemokine Ligand 5 (CXCL5) and interleukin‐6 (IL‐6) secretion in osteocytes. These novel findings indicate that both primary cilium and PTH1R are necessary in osteocytes for proper communication with osteoclasts and show that mechanical stimulation inhibits osteoclast recruitment and differentiation through CXCL5, while PTH1R activation regulate these processes via IL‐6