Montejo Rubio, María Consuelo
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- Functionalization of Morin-Loaded PLGA Nanoparticles with Phenylalanine Dipeptide Targeting the Brain
2022-10-31 Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder, with its incidence constantly increasing. To date, there is no cure for the disease, with a need for new and effective treatments. Morin hydrate (MH) is a naturally occurring flavonoid of the Moraceae family with antioxidant and anti-inflammatory properties; however, the blood–brain barrier (BBB) prevents this flavonoid from reaching the CNS when aiming to potentially treat AD. Seeking to use the LAT-1 transporter present in the BBB, a nanoparticle (NPs) formulation loaded with MH and functionalized with phenylalanine-phenylalanine dipeptide was developed (NPphe-MH) and compared to non-functionalized NPs (NP-MH). In addition, two formulations were prepared using rhodamine B (Rh-B) as a fluorescent dye (NPphe-Rh and NP-Rh) to study their biodistribution and ability to cross the BBB. Functionalization of PLGA NPs resulted in high encapsulation efficiencies for both MH and Rh-B. Studies conducted in Wistar rats showed that the presence of phenylalanine dipeptide in the NPs modified their biodistribution profiles, making them more attractive for both liver and lungs, whereas non-functionalized NPs were predominantly distributed to the spleen. Formulation NPphe-Rh remained in the brain for at least 2 h after administration.
- Evaluación de la técnica inhalatoria y la adherencia al tratamiento con inhaladores en farmacia comunitaria
2019-02-14 Most of the drugs used to treat obstructive pulmonary diseases are administered by the inhalation route. However, an incorrect inhalation technique may compromise the control of these pathologies. Objectives: The aim of this study was to evaluate the inhalation technique on patients of a community pharmacy and their medication adherence. Methods: A descriptive, cross-sectional observational study was carried out with 59 patients treated with inhalers who were surveyed on their inhalation technique and adherence to treatment. In addition, they were asked for a practical demonstration of their inhalation technique. Results: 47% of the surveyed patients committed critical inhaler use errors despite the fact that 97.3% of them considered they knew how to use properly their devices. The most frequent error was not to wait at least one minute between inhalations when it was necessary to repeat doses. Although 96% of the surveyed patients assured to have received information about how to use the inhaler, only 1% was provided by pharmacists. 47% of the patients showed a good adherence to the treatment. Nevertheless, 60% showed some type of non-compliance, being the erratic non-compliance the most frequent one. Conclusion: This study shows that a high percentage of patients present an incorrect inhalation technique and have a poor therapeutic adherence, which can contribute to a lower effectiveness of the treatment and a worse control of their health problems. A more active role of community pharmacists is needed to prevent this situation.
- Potential Active Targeting of Gatifloxacin to Macrophages by Means of Surface-Modified PLGA Microparticles Destined to Treat Tuberculosis
2019-12-05 Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis and represents one of the leading causes of mortality worldwide due to multidrugresistant TB (MDR-TB). In our work, a new formulation of biodegradable PLGA microparticles was developed for pulmonary administration of gatifloxacin, using a surface modifier agent to actively target alveolar macrophages thereby allowing to gain access of the drug to Mycobacterium tuberculosis. For this, rapid uptake of the particles by macrophages is beneficial. This process was evaluated with fluorescein-loaded microparticles using PLGA 502 or PLGA 502H as polymers and labrafil as surface modifier. Cell phagocytosis was studied in raw 264.7 mouse macrophage cell line after 3, 5, 24, and 48 h incubation with the microparticles. Labrafil enhanced the uptake rate of PLGA 502H microparticles by macrophages which was directly related to the modification of the polymer matrix. Gatifloxacin-loaded PLGA microparticles using PLGA 502 or PLGA 502H and labrafil were prepared. From our results, only microparticles prepared with PLGA 502H and labrafil exhibited high encapsulation efficiency (89.6 ± 0.2%), rapid phagocytosis by macrophages (3 h), and remained inside the cells for at least 48 h, thereby resulting in a suitable carrier to potentially treat MDR-TB.
- A Signal Processing Approach to Pharmacokinetic Data Analysis
2021-03-22 The connection between pharmacokinetic models and system theory has been established for a long time. In this approach, the drug concentration is seen as the output of a system whose input is the drug administered at different times. In this article we further explore this connection. We show that system theory can be used to easily accommodate any therapeutic regime, no matter its complexity, allowing the identification of the pharmacokinetic parameters by means of a non-linear regression analysis. We illustrate how to exploit the properties of linear systems to identify non-linearities in the pharmacokinetic data. We also explore the use of bootstrapping as a way to compare populations of pharmacokinetic parameters and how to handle the common situation of using multiple hypothesis tests as a way to distinguish two different populations. Finally, we demonstrate how the bootstrap values can be used to estimate the distribution of derived parameters, as can be the allometric scale factors.
- Sulfasalazine Microparticles Targeting Macrophages for the Treatment of Inflammatory Diseases Affecting the Synovial Cavity
2021-06-24 Rheumatoid arthritis (RA) is a chronic inflammatory disease with sulfasalazine (SSZ) extensively used for long-term treatment of both juvenile and adult RA. Its use is associated with adverse effects and toxicity due to its non-selective biodistribution. Macrophages play an important role in inflammatory processes. In order to target SSZ to macrophages in this work two microparticulate systems (MPs) are developed: SSZ-loaded PLGA MPs without and with -tocopherol, with particle sizes lower than 5 m and encapsulation efficiencies of 81.07 11% and 63.50 6.62%, respectively. Release of SSZ from MPs prepared with -tocopherol was prolonged for 20 days. In RAW264.7 cell macrophages MPs prepared with -tocopherol were captured faster. Cell viability studies confirmed that SSZ-loaded MPs prepared without and with -tocopherol did not produce cytotoxicity at the concentrations assayed. The anti-inflammatory activity of SSZ-loaded MPs was studied by quantifying interleukins IL-1, IL-6 and TNF- in macrophages. All formulations produced a significant reduction of cytokine concentrations after 24 and 72 h, indicating that release of SSZ from the MPs was able to inhibit the inflammatory response induced by lipopolysaccharide (LPS). Gene expression of IL-1, IL-6 and TNF- was decreased by SSZ-loaded MPs. SSZ-loaded MPs prepared with -tocopherol will potentially allow increasing the residence time of SSZ in the synovial cavity, prolonging its duration of action, and reducing the adverse effects associated with its non-selective biodistribution.
- Polycaprolactone microparticles for the subcutaneous administration of cannabidiol: in vitro and in vivo release
2023-10-12 Cannabidiol (CBD) has become a highly attractive entity in therapeutics. However, its low aqueous solubility, instability and handling problems limit the development of effective CBD formulations. Subcutaneously administered CBD-loaded polycaprolactone microparticles (MP) represent an interesting strategy to overcome these challenges. This work focuses on evaluating the pharmacokinetics of CBD formulated in polymer microparticles for subcutaneous administration and characterising its release. The mean release time (MRLT) parameter is used to compare the release of CBD from two microparticle formulations in vitro and in a mouse model. After the administration of CBD in solution, a bicompartmental distribution is observed due to the extensive diffusion to the brain, being the brain/blood AUC ratio 1.29. The blood and brain mean residence time (MRT) are 0.507 ± 0.04 and 0.257 ± 0.0004 days, respectively. MP prepared with two drug/polymer ratios (15/150-MP and 30/150-MP) are designed, showing similar in vitro dissolution profiles (similarity factor (f2) is 63.21),without statistically significant differences between MRLTin vitro values (4.68 ± 0.63 and 4.32 ± 0.05 days). However, considerable differences in blood and brain profiles between both formulations are detected. The blood and brain MRT values of 15/150-MP are 6.44 ± 0.3 days and 6.15 ± 0.25 days, respectively, whereas significantly lower values 3.91 ± 0.29 days and 2.24 ± 0.64 days are obtained with 30/150-MP. The extended release of CBD during 10 days after a single subcutaneous administration is achieved.
- Celecoxib Microparticles for Inhalation in COVID-19-Related Acute Respiratory Distress Syndrome
2022-06-30 Inhalation therapy is gaining increasing attention for the delivery of drugs destined to treat respiratory disorders associated with cytokine storms, such as COVID-19. The pathogenesis of COVID-19 includes an inflammatory storm with the release of cytokines from macrophages, which may be treated with anti-inflammatory drugs as celecoxib (CXB). For this, CXB-loaded PLGA microparticles (MPs) for inhaled therapy and that are able to be internalized by alveolar macrophages, were developed. MPs were prepared with 5% and 10% initial percentages of CXB (MP-C1 and MPC2). For both systems, the mean particle size was around 5 μm, which was adequate for macrophage uptake, and the mean encapsulation efficiency was >89%. The in vitro release of CXB was prolonged for more than 40 and 70 days, respectively. The uptake of fluorescein-loaded PLGA MPs by the RAW 264.7 macrophage cell line was evidenced by flow cytometry, fluorescence microscopy and confocal microscopy. CXB-loaded PLGA MPs did not produce cytotoxicity at the concentrations assayed. The anti-inflammatory activity of CXB (encapsulated and in solution) was evaluated by determining the IL-1, IL-6 and TNF-α levels at 24 h and 72 h in RAW 264.7 macrophages, resulting in a higher degree of reduction in the expression of inflammatory mediators for CXB in solution. A potent degree of gene expression reduction was obtained with the developed CXB-loaded MPs.