Valdivieso Blanco, Elizabeth
Research Projects
Organizational Units
Job Title
Faculty
University of origin
Name
Search Results
- Are pathogenic Legionella non-pneumophila a common bacteria in Water Distribution Networks?
2021-03-07 The present study analyzes at the national level, the presence of circulating Legionella in the artificial aquatic systems of different facilities of all of them state-owned centers throughout Spain for 12 months. 1754 water samples from various state-owned centers were collected from January to December 2014. Samples were collected from the cooling towers and evaporative condensers (CTC), and water distribution networks such as domestic hot water (DHW), cold water for human consumption (CW), sprinkler irrigation systems (SIS), fire sprinkler systems (FSS), and water from decorative fountains (DF). All these facilities are considered, according to current regulations, as potential amplifying systems for bacteria and possible sources of infection by the generation of droplets and aerosols. The isolation and counting of Legionella in water samples was carried out using microbiological culture following the international normative UNE-EN-ISO 11,731:2007 (ISO 11,731:1998) and UNE-EN ISO 8199:2008 (ISO 8199:2005).The quantification of Legionella colonization, the annual distribution, and the geographical distribution of the Legionella isolates recovered in the water were analyzed. Besides, molecular techniques were used for the characterization of the Legionella non-pneumophila isolates. Legionella was recovered from 15.79% of the analyzed water samples. High colonization was more frequently detected in water samples from CTC, DHW, CW, and DF. Regarding the geographic distribution, positive samples of Legionella were obtained in 14 of the 18 Spanish locations analyzed. Legionella non-pneumophila was the most prevalent and was isolated from water samples from 13 different geographical locations (72%). Legionella anisa and Legionella jordanis were the most frequently non-pneumophila species isolated. Legionella donaldsonii was isolated for the first time in the water distribution networks in Spain. Legionella pneumophila sg 2-14 was detected in 13 locations and Legionella pneumophila sg 1 in 11 locations. Therefore, our study concludes that the presence of Legionella pneumophila and Legionella non-pneumophila species in these systems can be a potential threat to public health and should be examined thoroughly with complementary techniques, such as molecular techniques as a screen for routine diagnosis.
- Microsporidia as a Potential Threat to the Iberian Lynx (Lynx pardinus)
2022-09-20 Lynx pardinus is one of the worldās most endangered felines inhabiting the Iberian Peninsula. The present study was performed to identify the presence of microsporidia due to the mortality increase in lynxes. Samples of urine (n = 124), feces (n = 52), and tissues [spleen (n = 13), brain (n = 9), liver (n = 11), and kidney (n = 10)] from 140 lynxes were studied. The determination of microsporidia was evaluated using Weberās chromotrope stain and Real Time-PCR. Of the lynxes analyzed, stains showed 10.48% and 50% positivity in urine and feces samples, respectively. PCR confirmed that 7.69% and 65.38% belonged to microsporidia species. The imprints of the tissues showed positive results in the spleen (38.46%), brain (22.22%), and liver (27.27%), but negative results in the kidneys. PCR confirmed positive microsporidia results in 61.53%, 55.55%, 45.45%, and 50%, respectively. Seroprevalence against Encephalitozoon cuniculi was also studied in 138 serum samples with a positivity of 55.8%. For the first time, the results presented different species of microsporidia in the urine, feces, and tissue samples of Lynx pardinus. The high titers of anti-E. cuniculi antibodies in lynx sera confirmed the presence of microsporidia in the lynx environment. New studies are needed to establish the impact of microsporidia infection on the survival of the Iberian lynx.