Facultad de Medicina
Permanent URI for this communityhttps://hdl.handle.net/10637/56
Search Results
- The impact of high-IgE levels on metabolome and microbiomein experimental allergic enteritis
2024-06-23 Background: The pathological mechanism of the gastrointestinal forms of food aller-gies is less understood in comparison to other clinical phenotypes, such as asthmaand anaphylaxis Importantly, high-IgE levels are a poor prognostic factor in gastroin-testinal allergies.Methods: This study investigated how high-IgE levels influence the development ofintestinal inflammation and the metabolome in allergic enteritis (AE), using IgE knock-in (IgEki) mice expressing high levels of IgE. In addition, correlation of the altered me-tabolome with gut microbiome was analysed.Results: Ovalbumin-sensitized and egg-white diet-fed (OVA/EW) BALB/c WT micedeveloped moderate AE, whereas OVA/EW IgEki mice induced more aggravated in-testinal inflammation with enhanced eosinophil accumulation. Untargeted metabo-lomics detected the increased levels of N-tau-methylhistamine and 2,3-butanediol,and reduced levels of butyric acid in faeces and/or sera of OVA/EW IgEki mice, whichwas accompanied with reduced Clostridium and increased Lactobacillus at the genus level. Non-sensitized and egg-white diet-fed (NC/EW) WT mice did not exhibit anysigns of AE, whereas NC/EW IgEki mice developed marginal degrees of AE. Comparedto NC/EW WT mice, enhanced levels of lysophospholipids, sphinganine and sphin-gosine were detected in serum and faecal samples of NC/EW IgEki mice. In addi-tion, several associations of altered metabolome with gut microbiome—for exampleAkkermansia with lysophosphatidylserine—were detected.Conclusions: Our results suggest that high-IgE levels alter intestinal and systemic levelsof endogenous and microbiota-associated metabolites in experimental AE. This studycontributes to deepening the knowledge of molecular mechanisms for the developmentof AE and provides clues to advance diagnostic and therapeutic strategies of allergicdiseases
- Further Insights into the Gut Microbiota of Cow’s Milk Allergic Infants: Analysis of Microbial Functionality and Its Correlation with Three Fecal Biomarkers
2023-05-25 Cow’s milk allergy (CMA) is one of the most prevalent food allergies in children. Several studies have demonstrated that gut microbiota influences the acquisition of oral tolerance to food antigens at initial stages of life. Changes in the gut microbiota composition and/or functionality (i.e., dysbiosis) have been linked to inadequate immune system regulation and the emergence of pathologies. Moreover, omic sciences have become an essential tool for the analysis of the gut microbiota. On the other hand, the use of fecal biomarkers for the diagnosis of CMA has recently been reviewed, with fecal calprotectin, -1 antitrypsin, and lactoferrin being the most relevant. This study aimed at evaluating functional changes in the gut microbiota in the feces of cow’s milk allergic infants (AI) compared to control infants (CI) by metagenomic shotgun sequencing and at correlating these findings with the levels of fecal biomarkers ( -1 antitrypsin, lactoferrin, and calprotectin) by an integrative approach. We have observed differences between AI and CI groups in terms of fecal protein levels and metagenomic analysis. Our findings suggest that AI have altered glycerophospholipid metabolism as well as higher levels of lactoferrin and calprotectin that could be explained by their allergic status.