Facultad de Medicina
Permanent URI for this communityhttps://hdl.handle.net/10637/56
Search Results
- Rapid separation of tetracycline derivatives and their main degradation products by capillary zone electrophoresis
2001-11-01 A mixture of five tetracycline (TC) derivatives: minocycline (MC), demeclocycline (DMCTC), doxycycline (DC), and sancycline (SC), as well as each TC derivative from its main degradation product were separated by capillary zone electrophoresis (CZE). The influence of the pH and the concentration and nature of the background electrolyte (BGE) on the separations was investigated. Ethylenediaminetetraacetic acid (EDTA; 1mM) was used as additive in a 25 mM phosphate buffer (pH 2.3) because this BGE enabled the rapid separation of the TC derivatives and of each TC derivative from its respective degradation product in less than 6 min. After optimization of the separation conditions, the analytical characteristics of the method were investigated. The parameters involved were linearity, precision (repeatability and reproducibility), and limits of detection (LODs). LODs obtained for the five TC derivatives studied were about 3 g/mL. Finally, the CZE method developed was applied to study the stability of TC derivatives and to analyze the TC derivative content in three different pharmaceutical preparations.
- Application of capillary zone electrophoresis withof f-line solid-phase extraction to in i vitro metabolism studies of antifungals
2001-11-01 A simple and robust solid-phase extraction (SPE) procedure for the cleanup and sample preconcentration of antifungals (ketoconazole, clotrimazole, itraconazole, fluconazole, and voriconazole) and their metabolites after incubation with human liver microsomes, as well as a simplified capillary zone electrophoresis (CZE) method for their rapid analysis, have been developed to determine the stability of these compounds in in vitro samples. Three different sample pretreatment procedures using SPE with reversed-phase sorbents (100 mg C8, 100 mg C18, and 30 mg Oasis-HLB) were studied. The highest and most reproducible recoveries were obtained using a 30mg Oasis- HLB sorbent and methanol containing2% acetic acid as eluent. Enrichment by a factor of about four times was achieved by reconstituting the final SPE eluates to a small volume. For the CZE separation, good separations without interfering peaks due to the in vitro matrix were obtained with a simple running electrolyte using a fused-silica capillary. The best separation for all components originated by each tested drug after incubation with human liver microsomes (unmetabolized parent drug and its metabolites) was obtained using a 0.05 M phosphate running buffer (pH 2.2) without additives. The effect of the injection volume was also investigated in order to obtain the best sensitivity. Performance levels in terms of precision, linearity, limits of detection, and robustness were determined.