2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    UCH
    Complete sequencing of the "Cryptosporidium suis gp60" gene reveals a novel type of tandem repeats: implications for surveillance2024-08

    Cryptosporidiosis is an infectious enteric disease caused by species (some of them zoonotic) of the genus Cryptosporidium that in many countries are under surveillance. Typing assays critical to the surveillance of cryptosporidiosis typically involve characterization of Cryptosporidium glycoprotein 60 genes (gp60). Here, we characterized the gp60 of Cryptosporidium suis from two samples—a human and a porcine faecal sample—based on which a preliminary typing scheme was developed. A conspicuous feature of the C. suis gp60 was a novel type of tandem repeats located in the 5′ end of the gene and that took up 777/1635 bp (48%) of the gene. The C. suis gp60 lacked the classical poly-serine repeats (TCA/TCG/TCT), which is usually subject to major genetic variation, and the length of the tandem repeat made a typing assay incorporating this region based on Sanger sequencing practically unfeasible. We therefore designed a typing assay based on the post-repeat region only and applied it to C. suis-positive samples from suid hosts from Norway, Denmark, and Spain. We were able to distinguish three different subtypes; XXVa-1, XXVa-2, and XXVa-3. Subtype XXVa-1 had a wider geographic distribution than the other subtypes and was also observed in the human sample. We think that the present data will inform future strategies to develop a C. suis typing assay that could be even more informative by including a greater part of the gene, including the tandem repeat region, e.g., by the use of long-read next-generation sequencing.

  • Thumbnail Image
    Publication
    UCH
    Building a "Genetics Social Network" for innovative teaching in Veterinary education2024

    Introduction: Practical competencies are crucial in teaching genetics to veterinary students, enabling them to master molecular genetics techniques for identifying genetic variants and diagnosing genetic diseases encountered in their professional practice. The «Genetics Social Network»” project aims to bridge the gap between theoretical knowledge and practical experience in genetics for veterinary students. By leveraging their familiarity and interest in new technologies, a shift from practice to praxis is proposed, enhancing student engagement, and aligning learning outcomes. This project aims to involve students in teaching by asking them to generate audiovisual material to review genetics techniques, fostering collaborative work and responsibility and enhancing laboratory skills and precision, transforming theory into lived experience. Materials and Methods: The project spanned two academic years, taking place within the practical sessions of the genetics course. A list of the developed molecular genetics techniques was compiled and participating students, usually organized in groups, selected one of them and utilized a part of the session time to produce micro-videos, akin to those on social media platforms. These micro-videos succinctly explained the key steps of the technique and practical tips. Using the Blackboard virtual teaching platform, a dedicated folder was created for sharing the generated micro-videos, enabling all classmates to access them for exam preparation. Additionally, voluntary participation in this project allows students to earn a micro-credential within the Veterinary Communication pathway. Results and discussion: After analysing the results of the first implementation of the project, enhancements were made to the presentation of the project to the students, aiming to promote greater acceptance. The results indicated an increase in student participation and engagement in the second year. Students reported a deeper understanding of genetic practices and expressed appreciation for the hands-on experience the project provided. The social network aspect fostered a sense of community and peer support, which was reflected in improved practical skills. Challenges included fostering increased student engagement and making video editing tools available and familiar to students, thereby enabling those who may hesitate to participate due to resource constraints to contribute as well. Conclusions: The «Genetics Social Network» has demonstrated potential as an effective tool for veterinary education, merging traditional learning with digital innovation. It has shown that when students’ technological affinity is harnessed for educational purposes, it can lead to enhanced learning outcomes. This project serves as a model for future educational innovations, suggesting that the integration of social technology in academia can be both beneficial and transformative.

  • Thumbnail Image
    Publication
    UCH
    Unbalanced redox status network as an early pathological event in congenital cataracts2023-10

    The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.