2. Universidad Cardenal Herrera-CEU

Permanent URI for this communityhttps://hdl.handle.net/10637/13

Search Results

Now showing 1 - 6 of 6
  • Thumbnail Image
    Publication
    UCH
    Building a "Genetics Social Network" for innovative teaching in Veterinary education2024

    Introduction: Practical competencies are crucial in teaching genetics to veterinary students, enabling them to master molecular genetics techniques for identifying genetic variants and diagnosing genetic diseases encountered in their professional practice. The «Genetics Social Network»” project aims to bridge the gap between theoretical knowledge and practical experience in genetics for veterinary students. By leveraging their familiarity and interest in new technologies, a shift from practice to praxis is proposed, enhancing student engagement, and aligning learning outcomes. This project aims to involve students in teaching by asking them to generate audiovisual material to review genetics techniques, fostering collaborative work and responsibility and enhancing laboratory skills and precision, transforming theory into lived experience. Materials and Methods: The project spanned two academic years, taking place within the practical sessions of the genetics course. A list of the developed molecular genetics techniques was compiled and participating students, usually organized in groups, selected one of them and utilized a part of the session time to produce micro-videos, akin to those on social media platforms. These micro-videos succinctly explained the key steps of the technique and practical tips. Using the Blackboard virtual teaching platform, a dedicated folder was created for sharing the generated micro-videos, enabling all classmates to access them for exam preparation. Additionally, voluntary participation in this project allows students to earn a micro-credential within the Veterinary Communication pathway. Results and discussion: After analysing the results of the first implementation of the project, enhancements were made to the presentation of the project to the students, aiming to promote greater acceptance. The results indicated an increase in student participation and engagement in the second year. Students reported a deeper understanding of genetic practices and expressed appreciation for the hands-on experience the project provided. The social network aspect fostered a sense of community and peer support, which was reflected in improved practical skills. Challenges included fostering increased student engagement and making video editing tools available and familiar to students, thereby enabling those who may hesitate to participate due to resource constraints to contribute as well. Conclusions: The «Genetics Social Network» has demonstrated potential as an effective tool for veterinary education, merging traditional learning with digital innovation. It has shown that when students’ technological affinity is harnessed for educational purposes, it can lead to enhanced learning outcomes. This project serves as a model for future educational innovations, suggesting that the integration of social technology in academia can be both beneficial and transformative.

  • Thumbnail Image
    Publication
    UCH
    Paws, poop, and PCR: unleashing student detectives in genetic exploration2024

    Introduction: Learning molecular genetics techniques is part of the program of the genetics course of the veterinary degree. It is essential to maintain motivation and interest in genetics practice by using a common thread that connects with the students’ interests. This work describes the design, implementation, and results of a gamification strategy developed during two practical sessions in which the student becomes a geneticist to identify which dog a faecal sample collected from the street belongs to, as some municipalities currently do to promote hygiene and public health in their streets. The aim was for students to understand basic concepts and techniques in molecular genetics during these two sessions. This included learning how to extract DNA from different types of samples, describing the amplification using Random Amplification Polymorphic DNA (RAPD), and getting a better understanding of molecular markers and the theory behind Polymerase Chain Reaction (PCR). Methodology: In the first practice, students extracted DNA from fresh dog faeces, while also discussing various DNA sources and extraction methods. Then they used the extracted DNA to create a simulated database of fictional dogs associated with students. They quantified the DNA, analysed its quality, and prepared a dilution to 10ng/μL. In the second practice, the students used RAPD to identify individuals by matching DNA from a simulated collected faeces sample to their fictional dogs DNA database. They performed amplification reactions with various primers pairs, followed by gel electrophoresis, to compare DNA band patterns and identify the dog and the fictional student associated with the uncollected dog faeces. The advantages and limitations of the RAPD technique were discussed, along with its potential applications in veterinary science and genetics. Results and discussion: The students were successful in extracting DNA with concentrations over 100 ng/μL in most cases as well as a good purity with respect to proteins. However, it was found that there was usually a low quality of DNA with respect to salts, although this did not influence the results of the second practice. They were able to generate reproducible RAPD profiles with all primer pairs. The unknown individual could be easily recognized within the database. Conclusions: It is concluded that this educational proposal is an effective option for teaching DNA extraction and the RAPD technique, as well as for many molecular genetics terms and concepts and contributes to the comprehensive training of future veterinary professionals. Additionally, the educational and social value of the practices are highlighted, as they promote interest in science, respect for the environment, and civic responsibility.

  • Thumbnail Image
    Publication
    UCH
    A COVID-19 drug repurposing strategy through quantitative homological similarities using a topological data analysis-based framework2021-04-02

    Since its emergence in March 2020, the SARS-CoV-2 global pandemic has produced more than 116 million cases and 2.5 million deaths worldwide. Despite the enormous efforts carried out by the scientific community, no effective treatments have been developed to date. We applied a novel computational pipeline aimed to accelerate the process of identifying drug repurposing candidates which allows us to compare three-dimensional protein structures. Its use in conjunction with two in silico validation strategies (molecular docking and transcriptomic analyses) allowed us to identify a set of potential drug repurposing candidates targeting three viral proteins (3CL viral protease, NSP15 endoribonuclease, and NSP12 RNA-dependent RNA polymerase), which included rutin, dexamethasone, and vemurafenib. This is the first time that a topological data analysis (TDA)-based strategy has been used to compare a massive number of protein structures with the final objective of performing drug repurposing to treat SARS-CoV-2 infection.

  • Thumbnail Image
    Publication
    UCH
    Circadian PERformance in breast cancer : a germline and somatic genetic study of PER3(VNTR) polymorphisms and gene co-expression2021-09-10

    Polymorphisms in the PER3 gene have been associated with several human disease phenotypes, including sleep disorders and cancer. In particular, the long allele of a variable number of tandem repeat (VNTR) polymorphism has been previously linked to an increased risk of breast cancer. Here we carried out a combined germline and somatic genetic analysis of the role of the PER3VNRT polymorphism in breast cancer. The combined data from 8284 individuals showed a non-significant trend towards increased breast cancer risk in the 5-repeat allele homozygous carriers (OR = 1.17, 95% CI: 0.97–1.42). We observed allelic imbalance at the PER3 locus in matched blood and tumor DNA samples, showing a significant retention of the long variant (risk) allele in tumor samples, and a preferential loss of the short repetition allele (p = 0.0005). Gene co-expression analysis in healthy and tumoral breast tissue samples uncovered significant associations between PER3 expression levels with those from genes which belong to several cancerassociated pathways. Finally, relapse-free survival (RFS) analysis showed that low expression levels of PER3 were linked to a significant lower RSF in luminal A (p = 3 × 10−12) but not in the rest of breast cancer subtypes.

  • Thumbnail Image
    Publication
    UCH
    Transcriptomic and genetic associations between Alzheimer's Disease, Parkinson's Disease, and cancer2021-06-15

    Alzheimer’s (AD) and Parkinson’s diseases (PD) are the two most prevalent neurodegenerative disorders in human populations. Epidemiological studies have shown that patients suffering from either condition present a reduced overall risk of cancer than controls (i.e., inverse comorbidity), suggesting that neurodegeneration provides a protective effect against cancer. Reduced risks of several site-specific tumors, including colorectal, lung, and prostate cancers, have also been observed in AD and PD. By contrast, an increased risk of melanoma has been described in PD patients (i.e., direct comorbidity). Therefore, a fundamental question to address is whether these associations are due to shared genetic and molecular factors or are explained by other phenomena, such as flaws in epidemiological studies, exposure to shared risk factors, or the effect of medications. To this end, we first evaluated the transcriptomes of AD and PD post-mortem brain tissues derived from the hippocampus and the substantia nigra and analyzed their similarities to those of a large panel of 22 site-specific cancers, which were obtained through differential gene expression meta-analyses of array-based studies available in public repositories. Genes and pathways that were deregulated in both disorders in each analyzed pair were examined. Second, we assessed potential genetic links between AD, PD, and the selected cancers by establishing interactome-based overlaps of genes previously linked to each disorder. Then, their genetic correlations were computed using cross-trait LD score regression and GWAS summary statistics data. Finally, the potential role of medications in the reported comorbidities was assessed by comparing disease-specific differential gene expression profiles to an extensive collection of differential gene expression signatures generated by exposing cell lines to drugs indicated for AD, PD, and cancer treatment (LINCS L1000). We identified significant inverse associations of transcriptomic deregulation between AD hippocampal tissues and breast, lung, liver, and prostate cancers, and between PD substantia nigra tissues and breast, lung, and prostate cancers. Moreover, significant direct (same direction) associations of deregulation were observed between AD and PD and brain and thyroid cancers, as well as between PD and kidney cancer. Several biological processes, including the immune system, oxidative phosphorylation, PI3K/AKT/mTOR signaling, and the cell cycle, were found to be deregulated in both cancer and neurodegenerative disorders. Significant genetic correlations were found between PD and melanoma and prostate cancers. Several drugs indicated for the treatment of neurodegenerative disorders and cancer, such as galantamine, selegiline, exemestane, and estradiol, were identified as potential modulators of the comorbidities observed between neurodegeneration and cancer.

  • Thumbnail Image
    Publication
    UCH
    Transcriptomic metaanalyses of autistic brains reveals shared gene expression and biological pathway abnormalities with cancer.2019-04-08

    Background: Epidemiological and clinical evidence points to cancer as a comorbidity in people with autism spectrum disorders (ASD). A significant overlap of genes and biological processes between both diseases has also been reported. Methods: Here, for the first time, we compared the gene expression profiles of ASD frontal cortex tissues and 22 cancer types obtained by differential expression meta-analysis and report gene, pathway, and drug set-based overlaps between them. Results: Four cancer types (brain, thyroid, kidney, and pancreatic cancers) presented a significant overlap in gene expression deregulations in the same direction as ASD whereas two cancer types (lung and prostate cancers) showed differential expression profiles significantly deregulated in the opposite direction from ASD. Functional enrichment and LINCS L1000 based drug set enrichment analyses revealed the implication of several biological processes and pathways that were affected jointly in both diseases, including impairments of the immune system, and impairments in oxidative phosphorylation and ATP synthesis among others. Our data also suggest that brain and kidney cancer have patterns of transcriptomic dysregulation in the PI3K/AKT/MTOR axis that are similar to those found in ASD. Conclusions: Comparisons of ASD and cancer differential gene expression meta-analysis results suggest that brain, kidney, thyroid, and pancreatic cancers are candidates for direct comorbid associations with ASD. On the other hand, lung and prostate cancers are candidates for inverse comorbid associations with ASD. Joint perturbations in a set of specific biological processes underlie these associations which include several pathways previously implicated in both cancer and ASD encompassing immune system alterations, impairments of energy metabolism, cell cycle, and signaling through PI3K and G protein-coupled receptors among others. These findings could help to explain epidemiological observations pointing towards direct and inverse comorbid associations between ASD and specific cancer types and depict a complex scenario regarding the molecular patterns of association between ASD and cancer.