1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    Publication
    USP
    Intracellular calcium and inflammatory markers, mediated by purinergic stimulation, are differentially regulated in monocytes of patients with major depressive disorder2021-10-02

    The P2X7 receptor (P2X7R) is a ligand-gated ion channel that is being recognized as a major player in neuropsychiatric disorders such as Major Depressive Disorder (MDD). P2X7R activation is triggered by high extracellular ATP concentrations, leading to channel opening and inducing an increase in cytosolic calcium concentration ([Ca2+]c), that activates the inflammatory pathway. Those receptors are expressed not only in CNS cells but also in peripheral blood cells, where they are activated in response to inflammatory molecules such as bacterial lipopolysaccharide (LPS). LPS induced-tissue damage promotes an elevation of extracellular ATP, triggering the NRLP3-inflammasome assembly and activation that, sequentially, induces caspase-1 cleavage and IL-1β processing and secretion. In this context, we attempt to understand the role of P2X7R in [Ca2+]c homeostasis regulation, inflammasome expression and its pharmacological modulation in MDD. For this purpose, monocytes were isolated from peripheral blood of MDD patients and [Ca2+]c was monitored with the intracellular probe Fura-2. Our results point out to P2X7R as the responsible of the Ca2+ imbalance, as well as TNFα-dependent activation of caspase-1 in MDD patients. In addition, P2X7R blockade with its specific antagonist, JNJ-47965567, reduces the Ca2+ entry upon Bz-ATP exposure. Altogether, our results point that MDD patients have both, Ca2+ homeostasis alteration and an inflammatory status, which promote an independentinflammasome activation of caspase-1. Therefore, we propose the pharmacological modulation of P2X7R as a therapeutic approach against MDD symptoms.

  • Thumbnail Image
    Publication
    USP
    Deficiency in the production of antibodies to lipids correlates with increased lipid metabolism in severe COVID-19 patients2023-06-23

    Background: Antibodies to lipids are part of the first line of defense against microorganisms and regulate the pro/anti-inflammatory balance. Viruses modulate cellular lipid metabolism to enhance their replication, and some of these metabolites are proinflammatory. We hypothesized that antibodies to lipids would play a main role of in the defense against SARS-CoV-2 and thus, they would also avoid the hyperinflammation, a main problem in severe condition patients. Methods: Serum samples from COVID-19 patients with mild and severe course, and control group were included. IgG and IgM to different glycerophospholipids and sphingolipids were analyzed using a high-sensitive ELISA developed in our laboratory. A lipidomic approach for studying lipid metabolism was performed using ultra-high performance liquid chromatography coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). Results: Mild and severe COVID-19 patients had higher levels of IgM to glycerophosphocholines than control group. Mild COVID-19 patients showed higher levels of IgM to glycerophosphoinositol, glycerophosphoserine and sulfatides than control group and mild cases. 82.5% of mild COVID-19 patients showed IgM to glycerophosphoinositol or glycerophosphocholines plus sulfatides or glycerophosphoserines. Only 35% of severe cases and 27.5% of control group were positive for IgM to these lipids. Lipidomic analysis identify a total of 196 lipids, including 172 glycerophospholipids and 24 sphingomyelins. Increased levels of lipid subclasses belonging to lysoglycerophospholipids, ether and/or vinyl-ether-linked glycerophospholipids, and sphingomyelins were observed in severe COVID-19 patients, when compared with those of mild cases and control group. Conclusion: Antibodies to lipids are essential for defense against SARS-CoV-2. Patients with low levels of anti-lipid antibodies have an elevated inflammatory response mediated by lysoglycerophospholipids. These findings provide novel prognostic biomarkers and therapeutic targets.

  • Thumbnail Image
    Publication
    USP
    Profilin-mediated food-induced allergic reactions are associated with oral epithelial remodeling2019-02

    Background: In areas of high exposure to grass pollen, allergic patients are frequently sensitized to profilin, and some experience severe profilin-mediated food-induced reactions. This specific population of patients is ideal to study the relationship between respiratory and food allergies. Objective: We sought to determine the role of oral mucosal epithelial barrier integrity in profilin-mediated allergic reactions. Methods: Thirty-eight patients with profilin allergy stratified into mild or severe according to their clinical history and response to a profilin challenge test and 6 nonallergic subjects were recruited. Oral mucosal biopsies were used for measurement of CD11c, CD3, CD4, tryptase, claudin-1, occludin, E-cadherin, and vascular endothelial growth factor A levels; Masson trichrome staining; and POSTN, IL33, TPSAB, TPSB, and CMA gene expression analysis by using quantitative RT-PCR. Blood samples were used for basophil activation tests. Results: Distinct features of the group with severe allergy included the following: (1) impaired epithelial integrity with reduced expression of claudin-1, occludin, and E-cadherin and decreased numbers of epithelial cells, which is indicative of acanthosis, higher collagen deposition, and angiogenesis; (2) inflammatory immune response in the mucosa, with an increased number of CD11c1 and CD41 infiltrates and increased expression of the cytokine genes POSTN and IL33; and (3) a 10-fold increased sensitivity of basophils to profilin. Conclusions: Patients with profilin allergy present with significant damage to the oral mucosal epithelial barrier, which might allow profilin penetration into the oral mucosa and induction of local inflammation. Additionally, severely allergic patients presented with increased sensitivity of effector cells. (J Allergy Clin Immunol 2019;143:681-90.)

  • Thumbnail Image
    Publication
    USP
    Connecting Metainflammation and Neuroinflammation Through the PTN-MK-RPTPb/z Axis: Relevance in Therapeutic Development2019-04-12

    Inflammation is a common factor of pathologies such as obesity, type 2 diabetes or neurodegenerative diseases. Chronic inflammation is considered part of the pathogenic mechanisms of different disorders associated with aging. Interestingly, peripheral inflammation and the associated metabolic alterations not only facilitate insulin resistance and diabetes but also neurodegenerative disorders. Therefore, the identification of novel pathways, common to the development of these diseases, which modulate the immune response and signaling is key. It will provide highly relevant information to advance our knowledge of the multifactorial process of aging, and to establish new biomarkers and/or therapeutic targets to counteract the underlying chronic inflammatory processes. One novel pathway that regulates peripheral and central immune responses is triggered by the cytokines pleiotrophin (PTN) and midkine (MK), which bind its receptor, Receptor Protein Tyrosine Phosphatase (RPTP) b/z, and inactivate its phosphatase activity. In this review, we compile a growing body of knowledge suggesting that PTN and MK modulate the immune response and/or inflammation in different pathologies characterized by peripheral inflammation associated with insulin resistance, such as aging, and in central disorders characterized by overt neuroinflammation, such as neurodegenerative diseases and endotoxemia. Evidence strongly suggests that regulation of the PTN and MK signaling pathways may provide new therapeutic opportunities particularly in those neurological disorders characterized by increased PTN and/or MK cerebral levels and neuroinflammation. Importantly, we discuss existing therapeutics, and others being developed, that modulate these signaling pathways, and their potential use in pathologies characterized by overt neuroinflammation.

  • Thumbnail Image
    Publication
    USP
    Functional status and inflammation after preseason training program in professional and recreational soccer players: a proteomic approach2011-03-01

    The purpose of the study was to determine if an intensive preseason training program modifies the inflammatory status in professional soccer players and if this inflammatory profile may be associated with the physical state. We compared plasma protein biomarkers, using proteomics, and the physiological state and cardiac function in 12 professional soccer players and 9 recreational soccer players. Reduced cardiac low frequency [LF] after the pre-season training program previous competition with respect to recreational soccer players was found. No differences were found in cardiac high frequency, cardiac high frequency/ low frequency ratio, tension index and oxygen volume consumption. Alpha-1-antitrypsin isotype-3, fibrinogen-gamma isotypes-1, 2 and 3 and vitamin-D-binding protein isotype-1 were reduced in professionals players compared with those in recreational players. However, an increased content of alpha-1- antitrypsin isotype-6 and alpha-1-antichymotrypsin 1 and 4 were found in professional soccer players. Spearman´s analysis showed a positive correlation between LF and fibrinogengamma chain isotype 3; but LF was negatively correlated with alpha-antichymotrypsin isotype 4. Professional soccer players submitted to an intensive training showed differences in the content of plasma proteins associated with inflammatory/ oxidative stress and thrombosis with respect to recreational soccer players. Proteomics analysis in combination with the analysis of cardiac function assessment may be useful to know more in depth molecular processes associated with sport and intensive exercise.

  • Thumbnail Image
    Publication
    USP
    Mechanisms of Impaired Brown Adipose Tissue Recruitment in Obesity2019-02-13

    Brown adipose tissue (BAT) dissipates energy to produce heat. Thus, it has the potential to regulate body temperature by thermogenesis. For the last decade, BAT has been in the spotlight due to its rediscovery in adult humans. This is evidenced by over a hundred clinical trials that are currently registered to target BAT as a therapeutic tool in the treatment of metabolic diseases, such as obesity or diabetes. The goal of most of these trials is to activate the BAT thermogenic program via several approaches such as adrenergic stimulation, natriuretic peptides, retinoids, capsinoids, thyroid hormones, or glucocorticoids. However, the impact of BAT activation on total body energy consumption and the potential effect on weight loss is still limited. Other studies have focused on increasing the mass of thermogenic BAT. This can be relevant in obesity, where the activity and abundance of BAT have been shown to be drastically reduced. The aim of this review is to describe pathological processes associated with obesity that may influence the correct differentiation of BAT, such as catecholamine resistance, inflammation, oxidative stress, and endoplasmic reticulum stress. This will shed light on the thermogenic potential of BAT as a therapeutic approach to target obesity-induced metabolic diseases.

  • Thumbnail Image
    Publication
    USP
    Unravelling the Inflammatory Processes in the Early Stages of Diabetic Nephropathy and the Potential Effect of (Ss)-DS-ONJ2022-07-30

    Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. The authors demonstrate that the glycolipid mimetic (Ss)-DS-ONJ is able to abolish inflammation via the induction of autophagy flux and provokes the inhibition of inflammasome complex in ex vivo and in vitro models, using adult kidney explants from BB rats. The contribution of (Ss)-DS-ONJ to reducing inflammatory events is mediated by the inhibition of classical stress kinase pathways and the blocking of inflammasome complex activation. The (Ss)-DS-ONJ treatment is able to inhibit the epithelial-to-mesenchymal transition (EMT) progression, but only when the IL18 levels are reduced by the treatment. These findings suggest that (Ss)-DS-ONJ could be a novel, and multifactorial treatment for DN.

  • Thumbnail Image
    Publication
    USP
    Adult kidney explants is a physiologic model for studying diabetic nephropathy2022-04-25

    Inflammatory processes play a central role in the pathogenesis of diabetic nephropathy (DN) in the early stages of the disease. In vitro approach using cell lines help to understand the mechanisms involves and allow the molecular and biochemical processes. Adult kidney (AK) explants remain an essential instrument for advancing our understanding of the molecular and cellular regulation of signalling pathways from an organotipic view with physiological system interaction integrated. AK explants from T1DM animal model (BB rat) are obtained by slicing central kidney area preserving the organ's cytoarchitecture and reproduce the classical events detected during the DN in an in vivo model such as inflammation, epithelial-mesenchymal transition (EMT) processes by the modulation of a-SMA and e-Cadherin among others which have been determined by qRT-PCR, western-blot and immunohistochemistry. In this regard, AK explants reproduce the signalling pathways involve in DN progression (proinflammatory NFkB and inflammasome complex). This work demonstrates AK explants is a physiological experimental approach for studying the development and progression of DN. Furthermore, the inflammatory processes in AK explants under a diabetic environment and/or BB rats could be modulated by potential treatments for DN.

  • Thumbnail Image
    Publication
    USP
    Sex-Specific Relationships of Physical Activity and Sedentary Behaviour with Oxidative Stress and Inflammatory Markers in Young Adults2023-01-04

    This study aims to analyse sex-specific associations of physical activity and sedentary behaviour with oxidative stress and inflammatory markers in a young-adult population. Sixty participants (21 women, 22.63 4.62 years old) wore a hip accelerometer for 7 consecutive days to estimate their physical activity and sedentarism. Oxidative stress (catalase, superoxide dismutase, glutathione peroxidase, glutathione, malondialdehyde, and advanced oxidation protein products) and inflammatory (tumour necrosis factor-alpha and interleukin-6) markers were measured. Student t-tests and single linear regressions were applied. The women presented higher catalase activity and glutathione concentrations, and lower levels of advanced protein-oxidation products, tumour necrosis factor-alpha, and interleukin-6 than the men (p < 0.05). In the men, longer sedentary time was associated with lower catalase activity (b = 􀀀0.315, p = 0.04), and longer sedentary breaks and higher physical-activity expenditures were associated with malondialdehyde (b = 􀀀0.308, p = 0.04). Vigorous physical activity was related to inflammatory markers in the women (tumour necrosis factor-alpha, b = 0.437, p = 0.02) and men (interleukin􀀀6, b = 0.528, p < 0.01). In conclusion, the women presented a better redox and inflammatory status than the men; however, oxidative-stress markers were associated with physical activity and sedentary behaviours only in the men. In light of this, women could have better protection against the deleterious effect of sedentarism but a worse adaptation to daily physical activity.