1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Publication
    UCH
    Monitoring platelet function in marine mammals: intracellular Ca2+ mobilization as a biomarker of platelet activation2024-01

    Platelet functionality plays a crucial role in marine mammals. Alterations in platelet function can result from stress, pathologies, or exposure to xenobiotics, among others. The early detection of platelet function abnormalities is essential in these species to prevent advanced pathology and mitigate potential risks. Our main objective was to establish a range of physiological values of platelet function in bottlenose dolphins (Tursiops truncatus), beluga whales (Delphinapterus leucas), sea lions (Otaria flavescens) and walruses (Odobenus rosmarus). Intraplatelet Ca2+ mobilization using adenosine diphosphate (ADP) as a platelet agonist was used as a platelet function biomarker, adapting the methodology previously described by us in dolphins (Felipo-Benavent et al., 2022) to the rest of the species. The assay was also adapted to a seal (Phoca vitulina). Numerical indicators of intraplatelet Ca2+ mobilization kinetics were established, and statistical analyses were performed to compare the effects of species, sex, age, aquarium and species. Significant differences were observed between species, being the platelets of the sea lions the more reactive to the agonist. This work demonstrates the usefulness of this assay in the diagnosis or monitoring of animals with hemostatic diseases, showing two clinical cases in which intraplatelet calcium mobilization values were altered in marine mammals suffering haemorrhages. This assay may also serve as a means to monitor environmental changes and their potential impact on the health of marine mammal populations.

  • Thumbnail Image
    Publication
    UCH
    Pathological findings and husbandry management in captive "Chrysaora" spp. medusae affected by umbrellar ulcerative lesions2021-07

    During a 12 month period, a group of 14 medusa-stage jellies of the genus Chrysaora, including Pacific sea nettle (Chrysaora fuscescens, n = 11) and Japanese sea nettle (Chrysaora pacifica, n = 3), that were maintained in a public aquarium developed progressive ulcerative umbrellar lesions. In 6 cases (42.9%), ulceration was deep, transmural, and perforated through the mesoglea and subumbrella. In 6 cases (42.9%), ciliated protozoa histomorphologically consistent with scuticociliates were observed in the mesoglea and gastrovascular cavity. In 2 cases (14.3%), commensal dinoflagellates (zooxanthellae) were in the mesoglea and in the cytoplasm of the scuticociliates. During this period, water quality parameters including temperature [°C], pH, oxidation-reduction potential (ORP) [mV], salinity [psu], dissolved oxygen [%], ammonia (NH3), and nitrite (NO2) levels were monitored daily or weekly. The main water quality abnormalities were increased NO2 and pH levels above recommended reference ranges for C. fuscescens and elevated temperature above recommended reference ranges for C. pacifica tank. After correction of water quality parameters, apparent improvement of jellies was observed. In this case, environmental factors were considered the most likely predisposing factors for the development of ulcerative lesions, and ciliated protozoa were considered secondary rather than primary pathogens.