1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    Publication
    UCH
    "Listeria spp." isolated from tonsils of wild deer and boars: genomic characterization2021-02-26

    Listeria monocytogenes is a major human and animal foodborne patho-gen. However, data from environmental reservoirs remain scarce. Here, we usedwhole-genome sequencing to characterize Listeria species isolates recovered over 1year from wild animals in their natural habitats in Spain. Three different Listeria spp.(L. monocytogenes [n = 19], Listeria ivanovii subsp. londoniensis [n = 4], and Listeriainnocua [n = 3]) were detected in 23 animal tonsils (9 deer, 14 wild boars) and 2feeding troughs. No Listeria species was detected in feces. L. monocytogenes wasdetected in tonsils of 44.4% (8 out of 18) of deer and 40.7% (11 out of 27) of wildboars. L. monocytogenes isolates belonged to 3 different core genome multilocussequence typing (cgMLST) types (CTs) of 3 distinct sublineages (SL1, SL387, andSL155) from lineages I and II. While cgMLST type L1-SL1-ST1-CT5279 (IVb; clonalcomplex 1 [CC1]) occurred only in one animal, types L1-SL387-ST388-CT5239 (IVb;CC388) and L2-SL155-ST155-CT1170 (IIa; CC155) were retrieved from multiple ani-mals. In addition, L1-SL387-ST388-CT5239 (IVb; CC388) isolates were collected 1 yearapart, revealing their long-term occurrence within the animal population and/orenvironmental reservoir. The presence of identical L. monocytogenes strains in deerand wild boars suggests contamination from a common food or environmentalsource, although interhost transmission cannot be excluded. Pathogenicity islandsLIPI-1, LIPI-3, and LIPI-4 were present in 100%, 5%, and 79% of the L. monocytogenesisolates, respectively, and all L. monocytogenes lineage II isolates (n = 3) carried SSI-1stress islands. This study highlights the need for monitoring L. monocytogenes envi-ronmental contamination and the importance of tonsils as a possible L. monocyto-genes intrahost reservoir.

  • Thumbnail Image
    Publication
    UCH
    Phenotypic and genotypic antimicrobial resistance of "Listeria spp." in Spain2024-06

    Listeriosis is a zoonotic disease caused by Listeria monocytogenes and Listeria ivanovii. The genus Listeria currently includes 27 recognized species and is found throughout the environment. The number of systematic studies on antimicrobial resistance in L. monocytogenes isolates from domestic farms using antimicrobial substances is limited. Importantly, dairy ruminant farms are reservoir of hypervirulent lineage I L. monocytogenes isolates, previously associated with human clinical cases. Considering that the classes of antibiotics used in food-producing domestic animals are frequently the same or closely related to those used in human medicine, studies about the impact of antibiotic use on the acquisition of antibiotic resistance in Listeria spp. in domestic animal farms are, therefore, of high importance. Here, susceptibility to 25 antibiotics was determined. Eighty-one animal-related, 35 food and 21 human pathogenic Listeria spp. isolates and 114 animal-related non-pathogenic Listeria spp. isolates were tested. Whole genome sequencing data was used for molecular characterization. Regarding L. monocytogenes, 2 strains from the clinical-associated linage I showed resistance to erythromycin, both related to dairy ruminants. Acquired resistance to one antibiotic was exhibited in 1.5% of L. monocytogenes isolates compared with 14% of non-pathogenic Listeria spp. isolates. Resistance to tetracycline (7.9%), doxycycline (7.9%), penicillin (4.4%), and ampicillin (4.4%) were the most frequently observed in non-pathogenic Listeria spp. While resistance to two or more antibiotics (5.6%) was most common in Listeria spp., isolates, resistance to one antibiotic was also observed (1.6%). The present results show that non-pathogenic Listeria spp. harbour antimicrobial resistance genes.

  • Thumbnail Image
    Publication
    UCH
    Antibacterial potential of commercial and wild lactic acid bacteria strains isolated from ovine and caprine raw milk against "Mycoplasma agalactiae"2023-06-22

    Introduction: The complexity of fighting contagious agalactia (CA) has raised the necessity of alternative antimicrobial therapies, such as probiotics. Lactic acid bacteria (LAB) are present in the mammary gland of small ruminants and their antimicrobial effect have been previously described against species like Mycoplasma bovis but never against Mycoplasma agalactiae (Ma). This in vitro study aims to evaluate the antimicrobial activity against Ma of ovine and caprine LAB strains and a human commercial probiotic (L2) of Lactobacillus spp. Methods: A total of 63 possible LAB strains were isolated from nine ovine and caprine farms in Spain, three isolates (33B, 248D, and 120B) from the 63 strains were selected, based on their capacity to grow in a specific medium in vitro, for an in vitro experiment to assess their antimicrobial activity against Ma in Ultra High Temperature (UHT) processed goat milk (GM). A women commercial vaginal probiotic was also included in the study. The inoculum of L2 was prepared at a concentration of 3.24 × 108 CFU/mL and the average concentration of the inoculum of the wild LAB varied from 7.9 × 107 to 8.4 × 108 CFU/mL. Results: The commercial probiotic L2 significantly reduced the concentration of Ma to 0.000 log CFU/mL (p < 0.001), strain 33B reduced it from 7.185 to 1.279 log CFU/mL (p < 0.001), and 120B from 6.825 to 6.466 log CFU/mL (p < 0.05). Strain 248D presented a bacteriostatic effect in GM. Moreover, the three wild strains and the commercial probiotic produced a significative reduction of the pH (p < 0.001). Discussion: This is the first in vivo report of the antimicrobial potential of LAB strains against Ma and its interaction. Our results support possible future alternative strategies to antibiotic therapy, previously not contemplated, to fight CA in small ruminants. Further studies are necessary to elucidate the action mechanisms through which these LAB are able to inhibit Ma and to assess the safety of using these strains in possible in vivo studies.

  • Thumbnail Image
    Publication
    UCH
    Presente y futuro del diagnóstico de gestación en el ganado bovino2022-04-05

    Para llevar a cabo el diagnóstico de gestación en el ganado bovino, se debe utilizar un método preciso, seguro, económico y que se pueda realizar de manera temprana. Aunque varias técnicas están actualmente disponibles en el mercado, otras siguen todavía en desarrollo, siendo posibles herramientas diagnósticas a tener en cuenta en un futuro. Por ello, el presente trabajo tiene como objetivo hacer una revisión sobre las diversas técnicas de diagnóstico de gestación (DG) y su potencial uso a nivel comercial, tanto en el presente como en el futuro, de la ganadería bovina. Los métodos directos para el DG, como son la palpación directa o la ecografía del tracto reproductor vía transrectal, siguen siendo los más empleados en la actualidad durante el control gestacional en el ganado vacuno. Son técnicas diagnósticas con buenos resultados y son interesantes a nivel económico, pero son herramientas invasivas y requieren una cierta experiencia por parte del técnico que las realiza. En general, se aplican a partir de la 3ª-4ª semana posterior a la inseminación artificial. Por otro lado, los métodos indirectos de DG son menos invasivos que los directos. Mediante este tipo de diagnósticos vía indirecta se puede detectar la presencia o ausencia de un embrión, sin visualizar directamente estructuras gestacionales. Existen métodos indirectos basados en signos clínicos, como la vigilancia del retorno al estro, así como técnicas indirectas bioquímicas, que permiten evaluar mediante el uso de kits rápidos ciertas sustancias como la progesterona (P4) o las Glicoproteínas Asociadas a la Gestación (GPAG), producidas durante la gestación de forma temprana. Otras técnicas novedosas y prometedoras, pero que todavía se encuentran en desarrollo, son la evaluación de moléculas como el interferón tau (IFNτ), los micro-ARN (miARN) y/o los Factores de Gestación Temprana (FGT).

  • Thumbnail Image
    Publication
    UCH
    Ruminant-associated "Listeria monocytogenes" isolates belong preferentially to dairy-associated hypervirulent clones : a longitudinal study in 19 farms2021-12-04

    Studies have shown that ruminants constitute reservoirs of Listeria monocytogenes, but little is known about the epidemiology and genetic diversity of this pathogen within farms. Here we conducted a largescale longitudinal study to monitor Listeria spp. in 19 dairy farms during three consecutive seasons (N = 3251 samples). L. innocua was the most prevalent species, followed by L. monocytogenes. Listeria monocytogenes was detected in 52.6% of farms and more frequently in cattle (4.1%) and sheep (4.5%) than in goat farms (0.2%). Lineage I accounted for 69% of L. monocytogenes isolates. Among animal samples, the most prevalent sublineages (SL) and clonal complexes (CC) were SL1/CC1, SL219/CC4, SL26/CC26 and SL87/CC87, whereas SL666/CC666 was most prevalent in environmental samples. Sixtyone different L. monocytogenes cgMLST types were found, 28% common to different animals and/or surfaces within the same farm and 21% previously reported elsewhere in the context of food and human surveillance. Listeria monocytogenes prevalence was not affected by farm hygiene but by season: higher prevalence was observed during winter in cattle, and during winter and spring in sheep farms. Cows in their second lactation had a higher probability of L. monocytogenes faecal shedding. This study highlights dairy farms as a reservoir for hypervirulent L. monocytogenes.

  • Thumbnail Image
    Publication
    UCH
    Vaginal microbiota changes during estrous cycle in dairy heifers2020-07-03

    The vaginal microbiota plays an important role in the health of dairy cattle, and it could be manipulated for the prevention and treatment of reproduction-related infections. The present study profiles and compares the vaginal microbiota of healthy dairy heifers during the estrous cycle focusing the results in follicular (estrus) and luteal (diestrus) phases using 16S rRNA sequencing of the V3–V4 hypervariable region. Twenty 13–16-months-old virgin dairy heifers from a single farm were included in this study. Vaginal swabs and blood samples were obtained during estrus (6–8 h before artificial insemination) and diestrus (14 days after insemination). Estrus was evaluated by an activity monitoring system and confirmed with plasma progesterone immunoassay. Results showed that the taxonomic composition of the vaginal microbiota was different during the follicular and luteal phases. At the phylum level, the most abundant bacterial phyla were Tenericutes, Firmicutes, and Bacteroidetes which comprised more than 75%of the vaginal microbiota composition. The next more abundant phyla, in order of decreasing abundance, were Proteobacteria, Actinobacteria, Fusobacteria, Epsilonbacteraeota, and Patescibacteria. Together with Tenericutes, Firmicutes, and Bacteroidetes represented more than 96% of the bacterial composition. Ureaplasma, Histophilus, f_Corynebacteriaceae, Porphyromonas, Mycoplasma, Ruminococcaceae UCG-005, were the most abundant genera or families. The results also showed that the vaginal microbiota of dairy heifers was non-lactobacillus dominant. The genus Lactobacillus was always found at a low relative abundance during the estrous cycle being more abundant in the follicular than in the luteal phase. Despite more research is needed to explore the potential use of native vaginal microbiota members as probiotics in dairy heifers, this study represents an important step forward. Understanding how the microbiota behaves in healthy heifers will help to identify vaginal dysbiosis related to disease.

  • Thumbnail Image
    Publication
    UCH
    The addition of "Lactobacillus spp." negatively affects "Mycoplasma bovis" viability in bovine cervical mucus2020-07-20

    Background: Mycoplasma bovis is an important pathogen for the cattle industry worldwide causing significant economic losses. Several transmission routes, including those related to reproduction, have been described. Indeed, the pathogen can colonize the female reproductive tract after artificial insemination (AI) with contaminated semen. Lactobacillus spp.-based probiotics have been used for vaginal dysbiosis treatment in women and cows although their role in controlling cervico-vaginal infections due to M. bovis is unknown. The objective of the present work is to assess the viability of M. bovis (PG45, NCTC 10131) in experimentally contaminated cervical mucus after the addition of Lactobacillus spp. at different concentrations as a competing agent and pH acidifier. Results: The addition of probiotic at a concentration higher than 108 colony forming units (CFU/mL had a detrimental effect (P < 0.05) on mycoplasma viability in cervical mucus. This coincided with a significant LAB growth and an important decrease in pH from 8.4 to 5.6 (P < 0.05). However, after the addition of less concentrated probiotic, M. bovis survival was not affected and there was no significant LAB growth despite the drop of pH from 8.4 to 6.73 (P < 0.05). Conclusion: The addition of concentrations higher than 108 CFU/mL of Lactobacillus spp. negatively affects M. bovis viability in bovine cervical mucus under in vitro conditions. Although the effect observed on the pathogen viability seems to be related to the pH decrease after LAB proliferation in cervical mucus, further studies are necessary to elucidate if other factors are implicated. Nevertheless, the administration of Lactobacillus spp.-based probiotics might be used in the future to control M. bovis proliferation in the cervico-vaginal tract of cows.

  • Thumbnail Image
    Publication
    UCH
    Use of probiotics in intravaginal sponges in sheep : a pilot study2020-04-20

    Sheep estrous synchronization is mainly based on progestagen-impregnated sponges which could cause vaginitis. Several species of Lactobacillus used as probiotics are commonly used in the treatment or prevention of urogenital infections in humans. However, no studies have been performed to analyze the potential use of probiotics to prevent urogenital infections in sheep. A randomized controlled clinical trial was conducted with 21 one-year-old ewes to develop a model of probiotic infusion in vaginal sponges in order to study their influence in ewe’s vaginal microbiota, general health status, fertility and prolificity. Synchronization of estrus was based on intravaginal sponges for 14 days. Bacterial communities (Enterobacteriaceae and lactic acid bacteria) were highly fluctuating over time and between animals. The safety of probiotic infusion (mix of Lactobacillus spp. 60% L. crispatus, 20% L. brevis and 20% L. gasseri) in the vagina of healthy ewes was firstly confirmed. Neutrophils were observed in 80% (8/10) of the control ewes compared to 36% (4/11) of the ewes in the probiotic group 2 days after sponge removal (p = 0.056). Fertility in the control and probiotic groups was 60% (6/10) and 91% (10/11), respectively p = 0.097. These results suggest that Lactobacillus spp. infusion in the ewe’s vagina does not affect general health status or fertility.