1. Investigación

Permanent URI for this communityhttps://hdl.handle.net/10637/1

Incluye cualquier documento producido por un miembro de la Fundación Universitaria San Pablo CEU fruto de su actividad investigadora: tesis doctorales, artículos, comunicaciones a congresos, capítulos, libros, etc.

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Publication
    UCH
    Deciphering function of the pulmonary arterial sphincters in loggerhead sea turtles (Caretta caretta)2018-12-04

    To provide new insight into the pathophysiological mechanisms underlying gas emboli (GE) in bycaught loggerhead sea turtles (Caretta caretta), we investigated the vasoactive characteristics of the pulmonary and systemic arteries, and the lung parenchyma (LP). Tissues were opportunistically excised from recently dead animals for in vitro studies of vasoactive responses to four different neurotransmitters: acetylcholine (ACh; parasympathetic), serotonin (5HT), adrenaline (Adr; sympathetic) and histamine. The significant amount of smooth muscle in the LP contracted in response to ACh, Adr and histamine. The intrapulmonary and systemic arteries contracted under both parasympathetic and sympathetic stimulation and when exposed to 5HT. However, proximal extrapulmonary arterial (PEPA) sections contracted in response to ACh and 5HT, whereas Adr caused relaxation. In sea turtles, the relaxation in the pulmonary artery was particularly pronounced at the level of the pulmonary artery sphincter (PASp), where the vessel wall was highly muscular. For comparison, we also studied tissue response in freshwater sliders turtles (Trachemys scripta elegans). Both PEPA and LP from freshwater sliders contracted in response to 5HT, ACh and also Adr. We propose that in sea turtles, the dive response (parasympathetic tone) constricts the PEPA, LP and PASp, causing a pulmonary shunt and limiting gas uptake at depth, which reduces the risk of GE during long and deep dives. Elevated sympathetic tone caused by forced submersion during entanglement with fishing gear increases the pulmonary blood flow causing an increase in N2 uptake, potentially leading to the formation of blood and tissue GE at the surface. These findings provide potential physiological and anatomical explanations on how these animals have evolved a cardiac shunt pattern that regulates gas exchange during deep and prolonged diving.

  • Thumbnail Image
    Publication
    UCH
    Pathological findings and husbandry management in captive "Chrysaora" spp. medusae affected by umbrellar ulcerative lesions2021-07

    During a 12 month period, a group of 14 medusa-stage jellies of the genus Chrysaora, including Pacific sea nettle (Chrysaora fuscescens, n = 11) and Japanese sea nettle (Chrysaora pacifica, n = 3), that were maintained in a public aquarium developed progressive ulcerative umbrellar lesions. In 6 cases (42.9%), ulceration was deep, transmural, and perforated through the mesoglea and subumbrella. In 6 cases (42.9%), ciliated protozoa histomorphologically consistent with scuticociliates were observed in the mesoglea and gastrovascular cavity. In 2 cases (14.3%), commensal dinoflagellates (zooxanthellae) were in the mesoglea and in the cytoplasm of the scuticociliates. During this period, water quality parameters including temperature [°C], pH, oxidation-reduction potential (ORP) [mV], salinity [psu], dissolved oxygen [%], ammonia (NH3), and nitrite (NO2) levels were monitored daily or weekly. The main water quality abnormalities were increased NO2 and pH levels above recommended reference ranges for C. fuscescens and elevated temperature above recommended reference ranges for C. pacifica tank. After correction of water quality parameters, apparent improvement of jellies was observed. In this case, environmental factors were considered the most likely predisposing factors for the development of ulcerative lesions, and ciliated protozoa were considered secondary rather than primary pathogens.

  • Thumbnail Image
    Publication
    UCH
    Bottlenose dolphins ("Tursiops truncatus") aggressive behavior towards other cetacean species in the Western Mediterranean2021-11-03

    Aggressive behavior of bottlenose dolphins (Tursiops truncatus) towards conspecifics is widely described, but they have also often been reported attacking and killing harbour porpoises (Phocoena phocoena) around the world. However, very few reports exist of aggressive interactions between bottlenose dolphins and other cetacean species. Here, we provide the first evidence that bottlenose dolphins in the western Mediterranean exhibit aggressive behavior towards both striped dolphins (Stenella coeruleoalba) and Risso’s dolphins (Grampus griseus). Necropsies and visual examination of stranded striped (14) and Risso’s (2) dolphins showed numerous lesions (external rake marks and different bone fractures or internal organ damage by blunt trauma). Indicatively, these lessons matched the inter-tooth distance and features of bottlenose dolphins. In all instances, these traumatic interactions were presumed to be the leading cause of the death. We discuss how habitat changes, dietary shifts, and/or human colonization of marine areas may be promoting these interactions.

  • Thumbnail Image
    Publication
    UCH
    Systematic determination of herpesvirus in free-ranging cetaceans stranded in the Western Mediterranean : tissue tropism and associated lesions2021-10-28

    The monitoring of herpesvirus infection provides useful information when assessing marine mammals’ health. This paper shows the prevalence of herpesvirus infection (80.85%) in 47 cetaceans stranded on the coast of the Valencian Community, Spain. Of the 966 tissues evaluated, 121 tested positive when employing nested-PCR (12.53%). The largest proportion of herpesvirus-positive tissue samples was in the reproductive system, nervous system, and tegument. Herpesvirus was more prevalent in females, juveniles, and calves. More than half the DNA PCR positive tissues contained herpesvirus RNA, indicating the presence of actively replicating virus. This RNA was most frequently found in neonates. Fourteen unique sequences were identified. Most amplified sequences belonged to the Gammaherpesvirinae subfamily, but a greater variation was found in Alphaherpesvirinae sequences. This is the first report of systematic herpesvirus DNA and RNA determination in freeranging cetaceans. Nine (19.14%) were infected with cetacean morbillivirus and all of them (100%) were coinfected with herpesvirus. Lesions similar to those caused by herpesvirus in other species were observed, mainly in the skin, upper digestive tract, genitalia, and central nervous system. Other lesions were also attributable to concomitant etiologies or were nonspecific. It is necessary to investigate the possible role of herpesvirus infection in those cases.