Medicina

Permanent URI for this collectionhttps://hdl.handle.net/10637/57

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Publication
    USP
    Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper2023

    The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nanotechnologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.

  • Thumbnail Image
    Publication
    USP
    COVID-19 pandemic and allergen immunotherapyā€”an EAACI survey2021

    Background: As in many fields of medical care, the coronavirus disease 2019 (COVID-19) resulted in an increased uncertainty regarding the safety of allergen immunotherapy (AIT). Therefore, the European Academy of Allergy and Clinical Immunology (EAACI) aimed to analyze the situation in different countries and to systematically collect all information available regarding tolerability and possible amendments in daily practice of sublingual AIT (SLIT), subcutaneous AIT (SCIT) for inhalant allergies and venom AIT. Methods: Under the framework of the EAACI, a panel of experts in the field of AIT coordinated by the Immunotherapy Interest Group set-up a web-basedretrospective survey (SurveyMonkeyĀ®) including 27 standardized questions on practical and safety aspects on AIT in worldwide clinical routine. Results: 417 respondents providing AIT to their patients in daily routine answered the survey. For patients (without any current symptoms to suspect COVID-19), 60% of the respondents informed of not having initiated SCIT (40% venom AIT, 35% SLIT) whereas for the maintenance phase of AIT, SCIT was performed by 75% of the respondents (74% venom AIT, 89% SLIT). No tolerability concern arises from this preliminary analysis. 16 physicians reported having performed AIT despite (early) symptoms of COVID-19 and/or a positive test result for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Conclusions: This first international retrospective survey in atopic diseases investigated practical aspects and tolerability of AIT during the COVID-19 pandemic and gave no concerns regarding reduced tolerability under real-life circumstances. However, the data indicate an undertreatment of AIT, which may be temporary, but could have a long-lasting negative impact on the clinical care of allergic patients.

  • Thumbnail Image
    Publication
    USP
    Vaccines and allergic reactions: The past, the current COVID-19 pandemic, and future perspectives2021-06

    Vaccines are essential public health tools with a favorable safety profile and prophylactic effectiveness that have historically played significant roles in reducing infectious disease burden in populations, when the majority of individuals are vaccinated. The COVID-19 vaccines are expected to have similar positive impacts on health across the globe. While serious allergic reactions to vaccines are rare, their underlying mechanisms and implications for clinical management should be considered to provide individuals with the safest care possible. In this review, we provide an overview of different types of allergic adverse reactions that can potentially occur after vaccination and individual vaccine components capable of causing the allergic adverse reactions. We present the incidence of allergic adverse reactions during clinical studies and through post-authorization and post-marketing surveillance and provide plausible causes of these reactions based on potential allergenic components present in several common vaccines. Additionally, we review implications for individual diagnosis and management and vaccine manufacturing overall. Finally, we suggest areas for future research.

  • Thumbnail Image
    Publication
    USP
    Omics technologies in allergy and asthma research: an EAACI position paper.2022-06-05

    Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force ā€œOmics technologies in allergic researchā€ broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patientsā€™ stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.

  • Thumbnail Image
    Publication
    USP
    Molecular allergology and its impact in specific allergy diagnosis and therapy.2021-06-18

    Progressive knowledge of allergenic structures resulted in a broad availability of allergenic molecules for diagnosis. Component resolved diagnosis allowed a better understanding of patient sensitization patterns, facilitating allergen immunotherapy decisions. In parallel to the discovery of allergenic molecules, there was a progressive development of a regulation framework that affected both in vitro diagnostics and Allergen Immunotherapy products. With a progressive understanding of underlying mechanisms associated to Allergen immunotherapy and an increasing experience of application of molecular diagnosis in daily life, we focus in analyzing the evidencesof the value provided by molecular allergology in daily clinical practice, with a focus on Allergen Immunotherapy decisions.