Medicina
Permanent URI for this collectionhttps://hdl.handle.net/10637/57
Search Results
- Techniques for Phenotyping the Gut Microbiota Metabolome
2019 Omics strategies have triggered a revolution in the understanding of the microorganisms that reside in our body, and their implications in health and disease. For diagnosis and therapeutics, metabolomic fingerprinting is the most powerful approach, since the metabolites represent the actual interplay between humans and microbes. Studying the metabolome requires several new high-throughput analytical techniques and innovative computational methodologies. Herein, we will focus on the metabolomics workflow for gut microbiota analysis, including sampling, laboratory procedures, and available analytical techniques, paying special attention to microbiota isolation and multiplatform complementarity. Finally, we will summarize some applications and implications of gut microbiota metabolites in biomarkers discovery and several therapeutic strategies, such as fecal microbiota transplantation and the usage of prebiotics and probiotics.
- Functional microbiome deficits associated with ageing: Chronological age threshold
2019-11-15 Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three wellādefined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4āfold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8eā8). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2 > .987) and progressively decrease with age (r2 > .948). An age threshold for a 50% decrease is observed ca. 11ā31 years old, and a greater than 90% reduction is observed from the ages of 34ā54 years. Based on recent investigations linking tryptophan with abundance of indole and other āhealthyā longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively āyoungā age of 34 and, particularly, in the elderly are recommended.