Medicina

Permanent URI for this collectionhttps://hdl.handle.net/10637/57

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Publication
    USP
    Endotyping in Chronic Rhinosinusitis—An EAACI Task Force Report2024-12-06

    Chronic rhinosinusitis (CRS) is a clinical syndrome defined by typical sinonasal symptoms persisting for at least 12weeks. CRS is divided into two distinct phenotypes, CRS with nasal polyps (CRSwNP) and without (CRSsNP). The aim of the review is to provide an update on the current knowledge in CRS endotypes. The prevailing hypothesis regarding the pathogenesis of CRS suggests that dysfunctional interactions between the host and environmental stressors at the mucosal surface drive the diverse inflammatory mechanisms. Genetic and epigenetic variations in the mucosal immune system are believed to play a significant role in the pathomechanisms of CRS. Various environmental agents (such as microbes and irritants) have been implicated in CRS. In a healthy state, the sinonasal mucosa acts as a barrier, modulating environmental stimulation and mounting appropriate immune responses against pathogens with minimal tissue damage. Different endotypes may exist based on the specific mechanistic pathways driving the chronic tissue inflammation of CRS. There is a need to understand endotypes in order to better predict, diagnose, and treat CRS. This literature review provides an update on the role of the endotypes in CRS and the limitations of endotyping CRS in clinical practice. Understanding of the pathogenesis and optimal management of CRS has progressed significantly in the last decades; however, there still are several unmet needs in endotype research.

  • Thumbnail Image
    Publication
    USP
    Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper2023

    The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nanotechnologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.

  • Thumbnail Image
    Publication
    USP
    Omics technologies in allergy and asthma research: an EAACI position paper.2022-06-05

    Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force “Omics technologies in allergic research” broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients’ stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.