Medicina

Permanent URI for this collectionhttps://hdl.handle.net/10637/57

Search Results

Now showing 1 - 2 of 2
  • Publication
    USP
    Sample pre-treatment procedures for the omics analysis of human gut microbiota: Turning points, tips and tricks for gene sequencing and metabolomics2020-11-30

    The connection between gut microbiota and human health is becoming increasingly relevant and the number of groups working in this field is constantly growing. In this context, from high-throughput gene sequencing to metabolomics analysis, the omics technologies have contributed enormously to unveil the secret crosstalk between us and our microbes. All the omics technologies produce a great amount of information, and processing this information is time-consuming and expensive. For this reason, a correct experimental design and a careful pre-analytical planning are crucial. To study the human gut microbiota, faeces are the sample of choice. Faecal material is complex, and procedures for collecting and preserving faeces are not well-established. Furthermore, increasing evidence suggests that multiple confounding factors, such as antibiotics consumption, mode of delivery, diet, aging and several diseases and disorders can alter the composition and functionality of the microbiota. This review is focused on the discussion of critical general issues during the pre-analytical planning, from patient handling to faeces sampling, including collection procedures, transport, storage conditions and possible pre-treatments, which are critical for a successful research in omics with a special attention to metabolomics and gene sequencing. We also point out that the adoption of standard operating procedures in the field is needed to guarantee accuracy and reproducibility of results.

  • Thumbnail Image
    Publication
    USP
    Microbiome and Allergy: New Insights and Perspectives2022

    The role of the microbiome in the molecular mechanisms underlying allergy has become highly relevant in recent years. Studies are increasingly suggesting that altered composition of the microbiota, or dysbiosis, may result in local and systemic alteration of the immune response to specific allergens. In this regard, a link has been established between lung microbiota and respiratory allergy, between skin microbiota and atopic dermatitis, and between gut microbiota and food allergy. The composition of the human microbiota is dynamic and depends on host-associated factors such as diet, diseases, and lifestyle. Omics are the techniques of choice for the analysis and understanding of the microbiota. Microbiota analysis techniques have advanced considerably in recent decades, and the need for multiple approaches to explore and comprehend multifactorial diseases, including allergy, has increased. Thus, more and more studies are proposing mechanisms for intervention in the microbiota. In this review, we present the latest advances with respect to the human microbiota in the literature, focusing on the intestinal, cutaneous, and respiratory microbiota. We discuss the relationship between the microbiome and the immune system, with emphasis on allergic diseases. Finally, we discuss the main technologies for the study of the microbiome and interventions targeting the microbiota for prevention of allergy.