Escuela de Politécnica Superior
Permanent URI for this collectionhttps://hdl.handle.net/10637/7
Search Results
- Bad Air Can Also Kill Residential Indoor Air Quality and Pollutant Exposure Risk during the COVID-19 Crisis
2020-09-30 During the first outbreak of the SARS-CoV-2 pandemic the population, focusing primarily on the risk of infection, was generally inattentive to the quality of indoor air. Spain, and the city of Madrid in particular, were among the world’s coronavirus hotspots. The country’s entire population was subject to a 24/7 lockdown for 45 days. This paper describes a comparative longitudinal survey of air quality in four types of housing in the city of Madrid before and during lockdown. The paper analysed indoor temperatures and variations in CO2, 2.5 m particulate matter (PM2.5) and total volatile organic compound (TVOC) concentrations before and during lockdown. The mean daily outdoor PM2.5 concentration declined from 11.04 g/m3 before to 7.10 g/m3 during lockdown. Before lockdown the NO2 concentration values scored as ‘very good’ 46% of the time, compared to 90.9% during that period. Although the city’s outdoor air quality improved, during lockdown the population’s exposure to indoor pollutants was generally more acute and prolonged. Due primarily to concern over domestic energy savings, the lack of suitable ventilation and more intensive use of cleaning products and disinfectants during the covid-19 crisis, indoor pollutant levels were typically higher than compatible with healthy environments. Mean daily PM2.5 concentration rose by approximately 12% and mean TVOC concentration by 37% to 559%. The paper also puts forward a series of recommendations to improve indoor domestic environments in future pandemics and spells out urgent action to be taken around indoor air quality (IAQ) in the event of total or partial quarantining to protect residents from respiratory ailments and concomitantly enhanced susceptibility to SARS-CoV-2, as identified by international medical research.
- Assessment of Indoor Air Quality in Residential Buildings of New England through Actual Data
2022-01-10 Several studies on indoor air quality (IAQ) and sick building syndromes have been completed over the last decade, especially in cold countries. Efforts to make homes airtight to improve energy efficiency have created buildings with low ventilation rates, resulting in the build-up of indoor pollutants to harmful levels that would be otherwise unacceptable outdoors. This paper analyzed the infiltration rates, indoor temperatures, and variations in CO2, 2.5 m particulate matter (PM2.5), and total volatile organic compound (TVOC) concentrations over the fall of 2021 in several homes in New England, USA. A relationship between outdoor and indoor conditions and ventilation strategies has been set using the results from blower door tests and actual indoor air quality data. Although all case studies lacked mechanical ventilation devices, such as those required by ASHRAE Standard 62.2, natural ventilation and air leakage have been enough to keep VOCs and PM2.5 concentration levels at acceptable values most of the studied time. However, results revealed that 25% of a specific timeframe, the occupants have been exposed to concentration levels of CO2 above 1000 parts per million (ppm), which are considered potentially hazardous conditions.