Escuela de Politécnica Superior
Permanent URI for this collectionhttps://hdl.handle.net/10637/7
Search Results
- Influence of various fibers on the physico-mechanical properties of a sustainable geopolymer mortar-based on metakaolin and slag
2023-08-16 Recently, studies on sustainability and ecology have become widespread in almost all sectors. One of the most important reasons for this spread is the rapid increase in industrialization and, thus, the increase in waste caused by industries. In this context, significant efforts are being made to evaluate some of these wastes. One of these efforts is the production of geopolymers. In this research, metakaolin and slag-based geopolymer mortar samples were manufactured, and polyvinyl Alcohol, basalt, and macro synthetic polypropylene fibers were used to enhance the physical, mechanical, and high-temperature resistance of the sample. Physical and mechanical tests of the produced samples were performed after 28 days. Then, elevated-temperature experiments were conducted to evaluate the behavior of the fibers under the influence of high temperature. Following the high-temperature test, physical, mechanical and microstructure tests of the samples were performed. As a result, basalt fiber enhanced the compressive strength of 800 ◦C-exposed samples by 7.72% compared to the fiber-free sample. Also, polyvinyl Alcohol fiber increased the energy absorption capacity of the samples by increasing Charpy impact values to 72.22% compared to fiber-free sample. Moreover, macro synthetic polypropylene fiber reduced capillary water absorption value up to 12.44% compared to fiber-free sample.
- MgO-Based Cementitious Composites for Sustainable and Energy Efficient Building Design
2022-04-11 Concrete made with Portland cement is by far the most heavily used construction material in the world today. Its success stems from the fact that it is relatively inexpensive yet highly versatile and functional and is made from widely available raw materials. However, in many environments, concrete structures gradually deteriorate over time. Premature deterioration of concrete is a major problem worldwide. Moreover, cement production is energy-intensive and releases a lot of CO2; this is compounded by its ever-increasing demand, particularly in developing countries. As such, there is an urgent need to develop more durable concretes to reduce their environmental impact and improve sustainability. To avoid such environmental problems, researchers are always searching for lightweight structural materials that show high performance during both processing and application. Among the various candidates, Magnesia (MgO) seems to be the most promising material to attain this target. This paper presents a comprehensive review of the characteristics and developments of MgO-based composites and their applications in cementitious materials and energy-efficient buildings. This paper starts with the characterization of MgO in terms of environmental production processes, calcination temperatures, reactivity, and micro-physical properties. Relationships between different MgO composites and energy-efficient building designs were established. Then, the influence of MgO incorporation on the properties of cementitious materials and indoor environmental quality was summarized. Finally, the future research directions on this were discussed.