Please use this identifier to cite or link to this item:
http://hdl.handle.net/10637/9921
Comprehensive investigation of the lithium insertion mechanism of Na2Ti6O13 anode material for Li-ion batteries
Title: | Comprehensive investigation of the lithium insertion mechanism of Na2Ti6O13 anode material for Li-ion batteries |
Authors : | Kuhn, Alois Karl Pérez Flores, Juan Carlos García Alvarado, Flaviano |
Keywords: | Bateria de litio; Li-ion batteries |
Citation: | Journal of Materials Chemistry A. ISSN 2050-7488, 2018, 6, 443-455 |
Abstract: | Sodium hexatitanate Na2Ti6O13 with a tunnel structure has been proposed to be an attractive anode material for lithium ion batteries because of its low insertion voltage, structural stability and good reversibility. In order to obtain a full understanding of the properties of this titanate, a combination of in situ synchrotron X-ray diffraction, neutron diffraction and 7Li MAS solid-state NMR spectroscopy is used in the present work. During the first insertion stage (centered at 1.3 V) lithium is allocated in square planar LiO4 2c (Li1) sites, minimizing electrostatic repulsion with Na ions. During the second lithium uptake (centered at 1.1 V), Li ions pass from 2c to empty 4i (Li2) sites of y/b = 0.5 planes, near Ti3+ cations. Distribution of Li+ and Na+ ions with respect to Ti3+ cations was deduced from Fourier map differences (Rietveld technique) and NMR quantitative analyses in LiNa2Ti6O13 and Li2Na2Ti6O13 samples. 7Li MAS-NMR analysis showed that Li ions occupy three fourfold coordinated sites with reasonable Li+-O-Ti3+ bond distances, while Na cations remain at eightfold coordinated positions near Ti4+ cations as deduced from 23Na MAS-NMR spectroscopy. 7Li MAS-NMR recorded at increasing temperatures suggests that Li ions move along sinusoidal paths to reduce Li-Na electrostatic interactions. Li mobility along the b-axis is favored by partial occupation of interstitial 4i sites (Li3) located at both sides of Na cations in y/b = 0 planes. In lithium inserted samples the most probable - Li1(2c) → Li3(4i) → Li1(2c) - conduction paths were deduced. However, formation of Li pairs at y/b=0 planes (Li2 sites), where Li ions are located near Ti3+ cations, reduce the amount of mobile Li ions that participate in conduction processes. Proximity of lithium to Li and Na ions limits insertion to ca. 2 Li ions per structural formula. |
URI: | http://hdl.handle.net/10637/9921 |
Rights : | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es |
Issue Date: | 29-Jan-2019 |
Center : | Universidad San Pablo-CEU |
Appears in Collections: | Facultad de Farmacia |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.