Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/16101

Differences between sexes and speed levels in pelvic 3D kinematic patterns during running using an Inertial Measurement Unit (IMU)


thumbnail_pdf
Ver/Abrir:
 Differences_Perpiña_IJERPH_2023.pdf
871,5 kB
Adobe PDF
Título : Differences between sexes and speed levels in pelvic 3D kinematic patterns during running using an Inertial Measurement Unit (IMU)
Autor : Perpiñá Martínez, Sara
Arguisuelas Martínez, María Dolores
Pérez Domínguez, Borja
Nacher Moltó, Iván
Martínez Gramage, Javier
Materias: BiofísicaHuman biophysicsPelvisAthleticsAtletismo
Editorial : MDPI
Citación : Perpiñá-Martínez, S., Arguisuelas-Martínez, M.D., Pérez-Domínguez, B., Nacher-Moltó, I. & Martínez-Gramage, J. (2023). Differences between sexes and speed levels in pelvic 3D kinematic patterns during running using an Inertial Measurement Unit (IMU). International Journal of Environmental Research and Public Health, vol. 20, i. 4 (18 feb.), art. 3631. DOI: https://doi.org/10.3390/ijerph20043631
Resumen : This study aimed to assess the 3D kinematic pattern of the pelvis during running and establish differences between sexes using the IMU sensor for spatiotemporal outcomes, vertical acceleration symmetry index, and ranges of motion of the pelvis in the sagittal, coronal, and transverse planes of movement. The kinematic range in males was 5.92°–6.50°, according to tilt. The range of obliquity was between 7.84° and 9.27° and between 9.69° and 13.60°, according to pelvic rotation. In females, the results were 6.26°–7.36°, 7.81°–9.64°, and 13.2°–16.13°, respectively. Stride length increased proportionally to speed in males and females. The reliability of the inertial sensor according to tilt and gait symmetry showed good results, and the reliability levels were excellent for cadence parameters, stride length, stride time, obliquity, and pelvic rotation. The amplitude of pelvic tilt did not change at different speed levels between sexes. The range of pelvic obliquity increased in females at a medium speed level, and the pelvic rotation range increased during running, according to speed and sex. The inertial sensor has been proven to be a reliable tool for kinematic analysis during running.
URI : http://hdl.handle.net/10637/16101
Derechos: http://creativecommons.org/licenses/by/4.0/deed.es
Open Access
ISSN : 1660-4601 (Electrónico)
Fecha de publicación : 18-feb-2023
Centro : Universidad Cardenal Herrera-CEU
Aparece en las colecciones: Dpto. Enfermería y Fisioterapia





Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.