Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/14997

Data-dependent normalization strategies for untargeted metabolomics—a case study


Thumbnail

See/Open:
 Data_2020.JPG

38,06 kB
JPEG

See/Open:
 Data_Cuevas_AnalBio_Chem_2020.pdf
  Restricted Access
8,64 MB
Adobe PDF
 Request a copy
Title: Data-dependent normalization strategies for untargeted metabolomics—a case study
Authors : Cuevas Delgado, Paula
Dudzik, Danuta
Miguel, Verónica
Lamas, Santiago
Barbas Arribas, Coral.
Publisher: Springer Link
Citation: Cuevas-Delgado, P., Dudzik, D., Miguel, V. et al. Data-dependent normalization strategies for untargeted metabolomics—a case study. Anal Bioanal Chem 412, 6391–6405 (2020). https://doi.org/10.1007/s00216-020-02594-9
Abstract: Despite the recent advances in the standardization of untargeted metabolomics workflows, there is still a lack of attention to specific data treatment strategies that require deep knowledge of the biological problem and need to be applied after a well-thought out process to understand the effect of the practice. One of those strategies is data normalization. Data-driven assumptions are critical especially addressing unwanted variation present in the biological model as it can be the case in heterogeneous tissues, cells with different sizes or biofluids with different concentrations. Chronic kidney disease (CKD) is a widespread disorder affecting kidney structure and function. Animal models are being developed to be able to get valuable insights into the etiopathogenesis of the condition and effect of the treatments. Moreover, diagnosis and disease staging still require defining appropriate biomarkers. Untargeted metabolomics has the potential to deal with those challenges. Renal fibrosis is one of the consequences of kidney injury which greatly affects the concentration of metabolites in the same quantity of sample. To overcome this challenge, several data normalization strategies have been applied, following a multilevel normalization method with the overall aim of focussing on the relevant biological information and reducing the influence of disturbing factors. A comprehensive evaluation of the performance of the normalization strategies, both on methods assessing the intragroup variation and on the impact on differential analysis, is provided. Finally, we present evidence of the importance of biological-model-driven guided normalization methods and discuss multiple criteria that need to be taken into consideration to obtain robust and reliable data. Special concern is transmitted on the misleading conclusions that might be the consequence of inappropriate data pre-treatment solutions applied for untargeted methods.
Description: Más información sobre esta publicación en la URL: https://link.springer.com/article/10.1007/s00216-020-02594-9#citeas
URI: http://hdl.handle.net/10637/14997
Rights : http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
ISSN: 1618-2650
Issue Date: 4-Apr-2020
Center : Universidad San Pablo-CEU
Appears in Collections:Facultad de Farmacia





Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.