Please use this identifier to cite or link to this item:
http://hdl.handle.net/10637/14857
Binding mode and selectivity of a scorpiand-like polyamine ligand to single- and double-stranded DNA and RNA: metal- and pH-driven modulation
See/Open:
Binding_Inclan_CAEJ_2017.pdf
Restricted Access
326,22 kB
Adobe PDF
Request a copy
See/Open:
Binding_Inclan_CAEJ_2017.JPG
106,83 kB
JPEG
Title: | Binding mode and selectivity of a scorpiand-like polyamine ligand to single- and double-stranded DNA and RNA: metal- and pH-driven modulation |
Authors : | Inclán, Mario Guijarro, Lluis Pont, Isabel Frías Martínez, Juan Carlos Rotger, Carmen Orvay, Francisca Costa, Antoni García-España, Enrique Albelda, M. Teresa |
Keywords: | Gen; Genes; Química orgánica; Organic chemistry; Química inorgánica; Inorganic chemistry |
Publisher: | John Wiley & Sons |
Citation: | Inclán, M., Guijarro, Ll., Pont, I., Frías, J.C., Rotger, C., Orvay, F., Costa, A., García-España, E. & Albelda, M.T. (2017). Binding mode and selectivity of a scorpiand-like polyamine ligand to single- and double-stranded DNA and RNA: metal- and pH-driven modulation. Chemistry - A European Journal, vol. 23, i. 63 (13 nov.), pp. 15966-15973. DOI: https://doi.org/10.1002/chem.201702934 |
Abstract: | The interaction of a polyazacyclophane ligand having an ethylamine pendant arm functionalized with an anthryl group (L), with the single-stranded polynucleotides polyA, polyG, polyU, and polyC as well as with the double-stranded polynucleotides polyA–polyU, poly(dAT)2, and poly(dGC)2 has been followed by UV/Vis titration, steady state fluorescence spectroscopy, and thermal denaturation measurements. In the case of the single-stranded polynucleotides, the UV/Vis and fluorescence titrations permit to distinguish between sequences containing purine and pyrimidine bases. For the double-stranded polynucleotides the UV/Vis measurements show for all of them hypochromicity and bathochromic shifts. However, the fluorescence studies reveal that both polyA–polyU and poly(dAT)2 induce a twofold increase in the fluorescence, whereas interaction of poly(dGC)2 with the ligand L induces a quenching of the fluorescence. Cu2+ modulates the interaction with the double-stranded polynucleotides due to the conformation changes that its coordination induces in compound L. In general, the spectroscopic studies show that intercalation seems to be blocked by the formation of the metal complex. All these features suggest the possibility of using compound L as a sequence-selective fluorescence probe. |
Description: | Este recurso no está disponible en acceso abierto por política de la editorial. |
URI: | http://hdl.handle.net/10637/14857 |
ISSN: | 0947-6539 1521-3765 (Electrónico) |
Issue Date: | 13-Nov-2017 |
Center : | Universidad Cardenal Herrera-CEU |
Appears in Collections: | Dpto. Ciencias Biomédicas |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.