Please use this identifier to cite or link to this item:
http://hdl.handle.net/10637/11329
On a Theorem of Ore
Title: | On a Theorem of Ore |
Authors : | Montes, Jesús Nart, Enric |
Abstract: | 0. Ore (Math. Ann. 99. 1928, 84-I 17) developed a method for obtaining the absolute discriminant and the prime-ideal decomposition of the rational primes in a number field K. The method, based on Newton’s polygon techniques, worked only when certain polynomials /i(Y), attached to any side S of the polygon, had no multiple factors. These results are generalized in this paper finding a much weaker condition, effectively computable, under which it is still possible to give a complete answer to the above questions. The multiplicities of the irreducible factors of the polynomials /;( Y) play thtn an essential role. |
URI: | http://hdl.handle.net/10637/11329 |
Rights : | L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Issue Date: | 1992 |
Center : | Universitat Abat Oliba CEU |
Appears in Collections: | Documents de recerca |
This item is licensed under a Creative Commons License