Please use this identifier to cite or link to this item: http://hdl.handle.net/10637/10673

Obtaining microbiological and pharmacokinetic highly predictive equations


Thumbnail

See/Open:
 Obtaining_Bueso_CTMC_2018.jpg
222,43 kB
JPEG

See/Open:
 Obtaining_Bueso_CTMC_2018.pdf
  Restricted Access
380,71 kB
Adobe PDF
 Request a copy
Title: Obtaining microbiological and pharmacokinetic highly predictive equations
Authors : Lahuerta Zamora, Luis
Martín Algarra, Rafael Vicente
Antón Fos, Gerardo Manuel
Costa Piles, Sara
Bueso Bordils, José Ignacio
Alemán López, Pedro
Duart Duart, María José
Keywords: Microbiología farmacéutica - Modelos matemáticos.Farmacología molecular - Modelos matemáticos.Pharmaceutical microbiology - Mathematical models.Molecular pharmacology - Mathematical models.Biología molecular - Modelos matemáticos.Quinolone antibacterial agents - Mathematical models.Molecular biology - Mathematical models.Quinolonas - Modelos matemáticos.
Citation: Bueso-Bordils, J.I., Aleman-López, P.A., Costa-Piles, S., Duart, M.J., Lahuerta-Zamora, L., Martin-Algarra, R., & Anton-Fos, G.M. (2018). Obtaining microbiological and pharmacokinetic highly predictive equations. Current Topics in Medicinal Chemistry, 18(11), 908–916. https://doi.org/10.2174/1568026618666180712092326
Abstract: In this paper, a multilinear regression (MLR) analysis has been carried out in order to accurately predict physicochemical properties and biological activities of a group of antibacterial quinolones by means of a set of structural descriptors called topological indices. The aim of this work is to develop prediction equations for these properties after collecting the maximum number of data from the literature on antibacterial quinolones. The five regression functions selected by presenting the best combination of various statistical parameters, subsequently validated by means of internal validation (intercorrelation, Y-randomization and leave-one-out cross-validation tests), allowed the reliable prediction of minimum inhibitory concentration 50 versus Staphylococcus aureus (MIC50Sa), Streptococcus pyogenes (MIC50Spy) and Bacteroides fragilis (MIC50Bf), mean residence time (MRT) after oral administration and volume of distribution (VD). We conclude that the combination of molecular topology methods and MLR provides an excellent tool for the prediction of pharmacological properties.
Description: Este artículo se encuentra disponible en la siguiente URL: http://www.eurekaselect.com/163701/article
En este artículo también participan Pedro A. Alemán-López, Sara Costa-Piles, María J. Duart, Luis Lahuerta-Zamora, Rafael Martín-Algarra, Gerardo M. Antón-Fos.
Este recurso no está disponible en acceso abierto por política de la editorial.
URI: http://hdl.handle.net/10637/10673
ISSN: 1568-0266
1873-4294 (Electrónico)
Issue Date: Nov-2018
Center : Universidad Cardenal Herrera-CEU
Appears in Collections:Dpto. Farmacia





Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.