Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10637/7892
Título : Geometric structures in tensor representations : final release / Antonio Falcó, Wolfgang Hackbusch and Anthony Nouy.
Autor : Falcó Montesinos, Antonio.
Nouy, Anthony.
Hackbusch, Wolfgang.
Materias: Análisis numérico - Documentos de trabajo.Cálculo tensorial - Documentos de trabajo.Análisis funcional - Documentos de trabajo.Álgebra de tensores - Documentos de trabajo.Tensor algebra - Working papers.Espacios generalizados - Documentos de trabajo.Functional analysis - Working papers.Function spaces - Working papers.Calculus of tensors - Working papers.Generalized spaces - Working papers.Espacios funcionales - Documentos de trabajo.Banach, Espacios de - Documentos de trabajo.Banach spaces - Working papers.Geometría diferencial - Documentos de trabajo.Geometry, Differential - Working papers.Numerical analysis - Working papers.
Fecha de publicación : 22-jun-2015
Citación : Falcó, A., Hackbusch, W. & Nouy, A. (2015). Geometric structures in tensor representations : final release.
Resumen : The main goal of this paper is to study the geometric structures associated with the representation of tensors in subspace based formats. To do this we use a property of the so-called minimal subspaces which allows us to describe the tensor representation by means of a rooted tree. By using the tree structure and the dimensions of the associated minimal subspaces, we introduce, in the underlying algebraic tensor space, the set of tensors in a tree-based format with either bounded or fixed tree-based rank. This class contains the Tucker format and the Hierarchical Tucker format (including the Tensor Train format). In particular, we show that the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank of an algebraic tensor product of normed vector spaces is an analytic Banach manifold. Indeed, the manifold geometry for the set of tensors with fixed tree-based rank is induced by a fibre bundle structure and the manifold geometry for the set of tensors with bounded tree-based rank is given by a finite union of connected components where each of them is a manifold of tensors in the tree-based format with a fixed tree-based rank. The local chart representation of these manifolds is often crucial for an algorithmic treatment of high-dimensional PDEs and minimization problems. In order to describe the relationship between these manifolds and the natural ambient space, we introduce the definition of topological tensor spaces in the tree-based format. We prove under natural conditions that any tensor of the topological tensor space under consideration admits best approximations in the manifold of tensors in the tree-based format with bounded tree-based rank. In this framework, we also show that the tangent (Banach) space at a given tensor is a complemented subspace in the natural ambient tensor Banach space and hence the set of tensors in the tree-based format with bounded (respectively, fixed) tree-based rank is an immersed submanifold. This fact allows us to extend the Dirac-Frenkel variational principle in the bodywork of topological tensor spaces.
Descripción : Este documento de trabajo se encuentra disponible en http://arxiv.org/pdf/1505.03027v2.pdf
URI : http://hdl.handle.net/10637/7892
Derechos: http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
Aparece en las colecciones: Dpto. Matemáticas, Física y Ciencias Tecnológicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Geometric structures in tensor representations_Final release.pdf532,77 kBAdobe PDFVisualizar/Abrir



Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.